QUANTUM MECHANICS III

PHYS 518

Problem Set # 2

Distributed: October 8, 2008

Due: October 17, 2008

In resonance with the Nobel Prize in Physics for 2008 on Symmetry Breaking^{1,2}: The *order parameter* describing the normal \rightarrow supercondicting phase transition is the band gap Δ . Start from the BCS wavefunction (18.68) and the Hamiltonian (18.81):

- **a.** Compute $\langle BCS|H|BCS\rangle$.
- **b.** Compute $\partial \langle H \mu N \rangle / \partial v_{\alpha}$.
- **c.** Determine the values of u_{α}, v_{α} that make $\langle H \mu N \rangle$ stationary.
- **d.** Determine the ground state energy E_g (18.91).
- **e.** Derive the equation that determines the band gap Δ .
- **f.** Assume $\langle \alpha, -\alpha | V | \gamma, -\gamma \rangle = -V_0$ for $|\epsilon_{\alpha} \mu| < \hbar \omega$ and assume that this matrix element is zero for $|\epsilon_{\alpha} \mu| > \hbar \omega$. Determine Δ in terms of V_0 and the density of states at the Fermi surface.
 - g. Under what conditions can the order parameter be nonzero?
- 1. Y. Nambu, Quasi-Particles and Gauge Invariance in the Theory of Superconductivity, Phys. Rev. **117**(3), 648-663 (1960).
- 2. Y. Nambu, Axial Vector Current Conservation in Weak Interactions, Phys. Rev. Lett. 4(7), 380-382 (1960).