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The process of gravitational collapse excites the fields propagating in the background geometry and
gives rise to thermal radiation. We demonstrate by explicit calculations that the density matrix
corresponding to such radiation actually describes a pure state. While Hawking’s leading order density
matrix contains only the diagonal terms, we calculate the off-diagonal correlation terms. These correlations
start very small, but then grow in time. The cumulative effect is that the correlations become comparable to
the leading order terms and significantly modify the density matrix. While the trace of the Hawking’s
density matrix squared goes from unity to zero during the evolution, the trace of the total density matrix
squared remains unity at all times and all frequencies. This implies that the process of radiation from a
collapsing object is unitary.
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Introduction.—One of the most pressing problems in
modern physics is the information loss paradox in black
hole physics. Since Hawking radiation is purely thermal
[1], it is possible to convert a pure state into a mixed state,
which is forbidden in unitary quantum mechanics [2]. It
was often argued that subtle correlations between the
emitted Hawking quanta which are usually neglected could
be enough to recover information about the initial state and
convert an apparently maximally mixed thermal state into a
pure state [3,4]. This point of view was also often criticized
by noticing that small corrections to the leading order
Hawking terms are not enough to recover unitarity. The
purpose of this Letter is to perform explicit calculations
which may clarify this issue. We find indeed that the
process of gravitational collapse and subsequent evapora-
tion is manifestly unitary as seen by an asymptotic
observer.
We used the functional Schrödinger formalism, which is

especially convenient for this question since it gives us the
time evolution of the system rather than radiation from a
preexisting black hole [5–17]. We start with a massive shell
that is collapsing under its own gravitational pull. This
process induces a nontrivial time-dependent metric which
then excites the field quanta. The process of the gravita-
tional collapse takes infinite time for an outside observer;
however, radiation is pretty close to thermal when the
collapsing shell approaches its own Schwarzschild radius.
Our formalism gives us an explicit form of the wave
function of the emitted radiation, which contains complete
information not only about the diagonal Hawking terms,
but also about the nondiagonal correlations terms.
Correlations between the Hawking quanta are at first
indeed negligible with respect to the diagonal terms.
However, time evolution creates progressively more off-
diagonal terms than the diagonal ones. Moreover, time
evolution is such that these cross terms become of the same

order of magnitude as the Hawking terms. As a result, the
density matrix for the emitted radiation is significantly
modified, in particular, it is not purely diagonal. We
calculate the time evolution of the complete density matrix
as a function of time and frequency. The relevant quantity
that we want to obtain is the trace of the density matrix
squared [Trðρ̂2Þ], which tells us whether the system is in a
pure or mixed state. We find that if we take only diagonal
terms in density matrix then Trðρ̂h2Þ goes from unity to
zero, which means that the state goes from pure to mixed.
This is the standard Hawking’s result that implies infor-
mation loss. However, if we include the off-diagonal terms
then Trðρ̂2Þ remains unity at all frequencies and all times
during the evolution. This means that the initial state stays
pure during the evolution. This is the main result of our
analysis.
The formalism.—We consider a thin shell of matter

which collapses under its own gravity. We use
Schwarzschild coordinates because we are interested in
the point of view of an observer at infinity. The metric
outside the shell can be written as

ds2 ¼ −
�
1 −

Rs

r

�
dt2 þ

�
1 −

Rs

r

�
−1
dr2 þ r2dΩ2: ð1Þ

The interior of the domain wall is a flat spacetime due to the
Birkhoff theorem

ds2 ¼ −dT2 þ dr2 þ r2dΩ2: ð2Þ

The time coordinates of the two regions are related with the
proper time inside the shell as

dT
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Rτ

2

q
;

dt
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bþ Rτ

2
p

B
; ð3Þ
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where B ¼ 1 − Rs=R and Rτ ¼ ðdR=dτÞ. From here we get

dT
dt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B −

�
1 − B
B

�
Rt

2

s
: ð4Þ

An action of the massless scalar field propagating in the
background of the collapsing shell can be written as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

2
gμν∂μϕ∂νϕ; ð5Þ

where ϕ is a scalar field, which we can expand in terms of
the modes as

ϕ ¼
X
λ

aλðtÞfλðrÞ: ð6Þ

In the interior of shell, the action takes the form

Sin ¼ 2π

Z
dt

Z
RðtÞ

0

drr2
�
−
ð∂tϕÞ2
Tt

þ Ttð∂tϕÞ2
�
: ð7Þ

Similarly, outside of the shell it becomes

Sout ¼ 2π

Z
dt

Z
∞

RðtÞ
drr2

�
−
ð∂tϕÞ2
1 − Rs

r

þ
�
1 −

Rs

r

�
ð∂tϕÞ2

�
:

ð8Þ

The classical equation of motion for this collapsing shell
near the horizon can be written as [5]

Rt ¼ �B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

BR4

h2

r
; ð9Þ

where h is a constant. Using Eq. (4) and Eq. (9), we get

Tt ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð1 − BÞR

4

h2

r
: ð10Þ

When the shell is approaching its own Schwarzschild
radius, R → Rs, then Tt → 0; hence, the total action
becomes

S ∼ 2π

Z
dt

�
−
1

B

Z
Rs

0

drr2ð∂tϕÞ2

þ
Z

∞

Rs

drr2
�
1 −

Rs

r

�
ð∂tϕÞ2

�
; ð11Þ

which in terms of the modes gives

S ¼
Z

dt

�
−

1

2B
dak
dt

Akk0
dak0

dt
þ 1

2
akBkk0ak0

�
ð12Þ

with

Akk0 ¼ 4π

Z
Rs

0

drr2fkðrÞfk0 ðrÞ; ð13Þ

Bkk0 ¼ 4π

Z
∞

Rs

drr2
�
1 −

Rs

r

�
f0kðrÞf0k0 ðrÞ: ð14Þ

Matrices A and B are independent of RðtÞ. From the action
(12), we can find the corresponding Hamiltonian and write
down the Schrödinger equation Hψ ¼ i∂ψ=∂t as��

1 −
Rs

R

�
1

2
ΠkðA−1Þkk0Πk0 þ

1

2
akBkk0ak0

�
ψ ¼ i

∂ψ
∂t ;
ð15Þ

where the momentum is defined as

Πk ¼ −i
∂
∂ak : ð16Þ

Since matrices A and B are symmetric and real, both can be
diagonalized simultaneously with respective to eigenvalues
α and β. One can then write the Schrödinger equation in
terms of eigenmodes y (which are linear combinations of
the original modes a) as

�
−
�
1−

Rs

R

�
1

2α

∂2

∂y2þ
1

2
βy2

�
ψðy;tÞ¼ i

∂ψðy;tÞ
∂t : ð17Þ

Defining

η ¼
Z

t

0

dt

�
1 −

Rs

R

�
ð18Þ

one can rewrite Eq. (17) in a form similar to the harmonic
oscillator equation as

�
−

1

2α

∂2

∂y2 þ
α

2
ω2ðηÞy2

�
ψðy; ηÞ ¼ i

∂ψðy; ηÞ
∂η ; ð19Þ

where

ω2ðηÞ ¼
�
β

α

�
1

B
≡ ω0

2

B
: ð20Þ

The exact solution to this equation is

ψðy; ηÞ ¼ eiδðηÞ
�
α

πθ2

�ð1=4Þ
exp

�
i

�
θη
θ
þ i
θ2

�
αy2

2

�
; ð21Þ

where θ is the solution of the differential equation

θηη þ ω2ðηÞθ ¼ 1

θ3
ð22Þ

with initial conditions
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θð0Þ ¼ 1ffiffiffiffiffiffi
ω0

p ; θηð0Þ ¼ 0: ð23Þ

Since the background spacetime is time dependent, we
make a distinction between the initial frequency ω0 at
which the mode is created from the vacuum, and the final
frequency at some later time t defined as

ω̄ ¼ ω0et=2Rs : ð24Þ

The wave function ψðy; tÞ contains information about the
modes or particles excited in the spacetime in terms of their
frequencies at the final moment t. We want to construct a
density matrix of the system so we need to expand the wave
function in terms of a complete basis. We will use the
simple harmonic oscillator (SHM) basis ζnðyÞ.

ψðy; tÞ ¼
X
n

cnðtÞζnðyÞ: ð25Þ

The number of states in this basis is infinite so the size of
the density matrix will be infinite too. However, one can see
that the probability of exciting higher n states decreases
rapidly as n increases. Therefore, one can easily identify
trends even by considering finite (but large enough) n. The
coefficients cnðtÞ can be written as

cnðtÞ ¼
Z

dyζn�ðyÞψðy; tÞ: ð26Þ

The probability of finding a particle in a particular state n
is given by ∣cnðtÞ∣2. The coefficients cn can be explicitly
found as (see Supplemental Material [18])

cnðtÞ ¼
ð−1Þn=2eiα
ðω̄ρ2Þ1=4

ffiffiffiffi
2

P

r �
1 −

2

P

�
n=2 ðn − 1Þ!!ffiffiffiffiffi

n!
p ; ð27Þ

where P is given by

P ¼ 1 −
i
ω̄

�
θη
θ
þ i
θ2

�
: ð28Þ

In order to find cn we need to solve for θ. The simplest
analytic method is given in [19]. θ and θη can be found in
terms of η and ξ as

θ ¼ 1ffiffiffiffiffiffi
ω0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ χ2

q
: ð29Þ

θη ¼
1

ω0ρ
ðξξη þ χχηÞ: ð30Þ

η and ξ and their derivatives can be written in terms of
Bessel’s function as

ξ ¼ πu
2
½Y0ð2ω0ÞJ1ðuÞ − J0ð2ω0ÞY1ðuÞ�; ð31Þ

χ ¼ πu
2
½Y1ð2ω0ÞJ1ðuÞ − J1ð2ω0ÞY1ðuÞ�; ð32Þ

ξη ¼ −πω2
0½Y0ð2ω0ÞJ0ðuÞ − J0ð2ω0ÞY0ðuÞ�; ð33Þ

χη ¼ −πω2
0½Y1ð2ω0ÞJ0ðuÞ − J1ð2ω0ÞY0ðuÞ�; ð34Þ

where u≡ 2ω0

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
.

The occupation number at eigenfrequency ω̄ is given by
the expectation value

Nðt; ω̄Þ ¼
X
n

njcnj2: ð35Þ

The process of the gravitational collapse takes infinite time
for an outside observer; however, radiation is pretty close to
Planckian when the collapsing shell approaches its own
Schwarzschild radius. Since we are already working in a
near-horizon approximation, if we plot Nðt; ω̄Þ for some
fixed late t, the spectrum will resemble the thermal
Hawking distribution [5]. However, we are here interested
in correlations between the emitted quanta, which is
contained not in the diagonal spectrum, but actually in
the total density matrix for the system.
Density matrix.—Knowing the expansion coefficients cn

explicitly, we can construct the density matrix. The density
matrix is defined as

ρ̂ ¼
X

jψihψ j: ð36Þ

In our basis it can be rewritten as

ρ̂ ¼
X
mn

cmnjζmihζnj; ð37Þ

where cmn ≡ cmcn. The original Hawking radiation density
matrix ρh contains only the diagonal elements cnn, while
the cross terms cmn for m ≠ n are absent. The off-diagonal
terms represent interactions and correlations between the
states. The rationale behind neglecting the cross terms is
that these correlations are usually higher order effects and
will not affect the Hawking’s result in the first order.
However, as argued recently in [20] (see also [21]), during
the process of Hawking radiation, the correlations may start
off very small, but gradually grow as the process continues.
It may happen at the end that these off-diagonal terms can
modify the Hawking density matrix significantly enough
to yield a pure sate. The time-dependent functional
Schrödinger formalism is especially convenient to test this
proposal since it gives us the time evolution of the system.
In Fig. 1, we plot some terms (both diagonal and off-
diagonal) in the density matrix. We plot their time evolution
with the fixed frequency ω̄. We took absolute values of the
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off-diagonal cmn because they can be imaginary. All the
units are dimensionless. Dimensionless frequency is given
as ω̄RS, while dimensionless time is given as t=RS. From
the plot one can see that the coefficient c00 is initially
almost exactly 1, but then it decreases with time. The higher
terms start small but then they increase with time, reach
their maximum value and then they decrease. This is
expected because the system starts in the ground state.
As time progresses more modes are excited and higher
order terms increase in magnitude. This increase of higher
order terms cannot proceed indefinitely if unitarity is
preserved; i.e., any increase must be accompanied by a
decrease somewhere else. On the same plot we show the
trace of the density matrix Trðρ̂Þ as a check. The trace must
remain unity at all times to preserve probabilities. However,
we can numerically take into account only a finite number
of modes. Therefore, at some late time, the trace will start
decreasing on the graph since higher modes which have
not been included in numerics will become important. The
more modes we include, the longer the trace will remain
unity. In the Supplemental Material [18] we proved that
if one takes n → ∞, then Trðρ̂Þ always remains unity.
Hence we plotted the graph only up to the time when Trðρ̂Þ
remains one.
What is more important is that the magnitudes of the

off-diagonal terms also increase with time. This implies
that correlations among the created particles increase with
time up to the point when even higher order terms start
increasing. Since there are progressively more cross terms
than the diagonal terms, their cumulative contribution to
the total density matrix simply cannot be neglected.
In Fig. 2, we plotted cmn and Trðρ̂Þ as a function of ω̄
at a constant time. Trðρ̂Þ remains 1 for all frequencies. The
lowest term c00 increases with ω̄, but all other terms

decrease. This means that the lowest diagonal term
dominates and correlations are not that important at high
frequencies. Information content in the system is usually
given in terms of a trace of the squared density matrix.
If the trace of the squared density matrix is 1, then the state
is pure, while the zero trace corresponds to a mixed state.
In Fig. 3, we plot the traces of squares of two density
matrices as functions of time for a fixed frequency. One
is the Hawking density matrix ρ̂h, which contains only
the diagonal terms cnn and neglects correlations. The other
one is the total density matrix ρ̂ defined in Eq. (37), which
contains all the elements, including the off-diagonal
correlations. As expected, Trðρ̂2hÞ goes to zero as time
progresses, which means that the system is going from a
pure state to a maximally mixed thermal state. This is

FIG. 1 (color online). Elements of the density matrix cmn and
Trðρ̂Þ as a function of time at ω̄ ¼ 15, where an index n labeling
the modes goes up to n ¼ 101. As time increases, the magnitude
of c00 decreases, Trðρ̂Þ remains unity, and all other cmn increase,
reach the maximum values, then decrease again. This implies that
small correlations between the modes become as important as the
diagonal terms.

FIG. 2 (color online). Cross terms cnm and Trðρ̂Þ as a function
of ω̄ at fixed time t ¼ 5. As ω̄ increases all cmn decrease, but c00
increases.

FIG. 3 (color online). ρ̂h is the diagonal Hawking density
matrix, ρ is the total density matrix as in Eq. (37). We plot Trðρ̂2Þ
and Trðρ̂2hÞ as functions of time at a fixed frequency ω̄ ¼ 50.
The magnitude of Trðρ̂2hÞ decreases with time, meaning that the
system is losing information by going from a pure to a mixed
state. However, Trðρ̂2Þ remains unity at all times, which means
that the state remains pure. This implies that the information of
the system is conserved if cross-correlations are accounted for.
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often labeled as the information loss in the process of
Hawking radiation. However, if we plot the total Trðρ̂2Þ
we see that it always remains unity, which means that the
state always remain pure during the evolution and infor-
mation does not get lost. This clearly tells us that
correlations between the excited modes are very impor-
tant, and if one takes them into account, the information in
the system remains intact. In Fig. 4, we plot Trðρ̂2Þ and
Trðρ̂2hÞ as a function of ω̄ at a fixed time. As expected,
Trðρ̂2Þ remains 1 at all frequencies, but Trðρ̂2hÞ differs from
unity at low frequencies. This implies that ρh gives a good
description of the system at high frequencies, but it fails to
do so at low frequencies.
Conclusions.—In conclusion, we showed by explicit

calculations that radiation coming from a collapsing
object is manifestly unitary. Hawking’s thermal density
matrix is diagonal and inevitably leads to information
loss. However, when we take the off-diagonal correlation
terms into account, the density matrix describes a pure
state at all times. This result agrees well with [22], where it
was shown at that at late enough time all the information
in the system is contained in correlations between the
small subsystems (in this case emitted particles). Our
analysis was done for a static outside observer; however, it
will be very important to learn what an infalling observer

would see during the collapse in order to settle the
question of information loss.
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