QUANTUM MECHANICS II

PHYS 517

Problem Set #4 Distributed April 29, 2011 Due May 6, 2011 Nuclear Ground States

Prelude: Identify the notation you are using to identify nucleon orbitals.

1. Write down the nuclear ground state configuration of: $^{207}_{82}$ Pb, $^{208}_{82}$ Pb, and $^{209}_{82}$ Pb. For each, what the the ground state nuclear spin?

2. Write down the ground state configuration of all calcium isotopes from ${}^{40}_{20}$ Ca to ${}^{48}_{20}$ Ca. For each, what is the ground state nuclear spin?

3. Write down the ground state configuration of all isotones from $^{48}_{20}$ Ca to $^{56}_{28}$ Ni. For each, what is the ground state nuclear spin?

4. How many stable odd-odd nuclei are there? What are they? For each, what is the ground state nuclear configuration? What is the ground state nuclear spin?

5. An ²⁷Al nucleus in a crystal field is subject to an electrostatic perturbation. The crystal field perturbation has a dipole contribution $\mathcal{H}_d = DJ_z$ and a quadrupole contribution $\mathcal{H}_q = Q(J_+^2 + J_-^2)$.

a. Write down the ground state nuclear configuration of this nucleus. What is the ground state spin?

b. Draw a diagram illustrating how the ground state energies split under \mathcal{H}_d alone.

c. Draw a diagram illustrating how the ground state energies split under \mathcal{H}_q alone.

c. Draw a diagram illustrating how the ground state energies split under $\mathcal{H}_d + \mathcal{H}_q$. Assume D = Q > 0 for this calculation.