QUANTUM MECHANICS II

PHYS 517

Problem Set #3 Distributed April 20, 2011 Due April 29, 2011

Density Matrices, Schwinger Representation

- 1. Ballentine, Problem 2.5, pp. 60-61.
- 2. Ballentine, Problem 2.6, p. 61.
- 3. Ballentine, Problem 2.8, pp. 61.
- 4. Ballentine, Problem 2.9, p. 62.
- 5. Ballentine, Problem 2.10, pp. 62.

6. Introduce creation $(a_1^{\dagger}, a_2^{\dagger})$ and annihilation (a_1, a_2) operators for two independent boson modes, with standard commutation relations: $\left|a_{i}, a_{j}^{\dagger}\right| =$ δ_{ij} , all other commutators equal to zero. Now introduce three operators $\vec{S}_i =$ $\mathbf{a}^{\dagger}(\frac{1}{2})\sigma_i \mathbf{a}$, where, for example, $S_3 = \frac{1}{2}(a_1^{\dagger}a_1 - a_2^{\dagger}a_2)$.

a. Show that the operators S_i are hermitian.

- **b.** Compute the commutators $[\mathcal{S}_i, \mathcal{S}_j]$. **c.** Compute $\mathcal{S}^2 = \sum_{i=1}^3 \mathcal{S}_i^2$. **d.** Show that \mathcal{S}^2 commutes with each \mathcal{S}_i .

e. Compute the matrix elements of the operators \mathcal{S}^2 in the direct product basis: $\langle n'_1, n'_2 | * | n_1, n_2 \rangle$.

f. Compute the matrix elements of the operators S_i in the direct product basis: $\langle n'_1, n'_2 | * | n_1, n_2 \rangle$.