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Abstract

An external electric field E polarizes a hydrogen atom. This lowers the ground state en-
ergy and also partly breaks the N2-fold degeneracy of the N2 hydrogenic states ψNLM (x) =
〈x|NLM〉 with principal quantum number N . We apply the tools of nondegenerate state per-
turbation theory to describe the effect of the field E on the bound states of the hydrogen atom.

1 Introduction

An electric field partly lifts the degeneracies of atomic energy levels. This splitting was observed by
Stark [1] and explained by Schrödinger [2]. We compute the Stark effect on atomic hydrogen using
perturbation theory by diagonalizing the perturbation term in the N2-fold degenerate multiplet of
states with principal quantum number N . We exploit the symmetries of this problem to simplify the
numerical computations. In particular, after assuming the N ′-N matrix elements of the hamiltonian
〈N ′L′M ′|H|NLM〉 are not important, we use symmetry to show that these matrix elements: (i.)
vanish unless M ′ = M ; (ii.) vanish unless L′ = L ± 1; (iii.) are the same for M and −M ; and
(iv.) factor into a product of two simpler functions which are simple look-ups. The Stark effect
partly breaks the N2-fold degeneracy of the states in the principal quantum level N into one N -fold
degenerate multiplet and two multiplets with degeneracies k, where k = 0, 1, 2, · · · , N − 1. The
splitting is indicated in Fig. 1.

The perturbing hamiltonian is introduced in Sect. 2. In Sect. 3 we construct the matrix elements
of this hamiltonian. The effects of symmetry on this computation are described in Sect. 4 and applied
to the 16-fold degenerate multiplet with N = 4 in Sect. 5. The nature of the splitting for arbitrary
N is described in Sect. 6. In a sense, the splitting is similar to that encountered in the case of an
external magnetic field B (Zeeman effect). In Sect. 7 we apply nondegenerate state perturbation
theory to study the effect of the electric field on the ground state of the hydrogen atom. In this case
first order perturbation theory provides a null result, and we must go to second order perturbation
theory to estimate the atomic polarizability of atomic hydrogen in the ground state. I n Sects. 8
and 9 we return to the question of how good is the first approximation that was made: that the
N ′-N matrix elements could be neglected. It turns out to be a good approximation in one way, but
bad in an unexpected way. We summarize our results in the closing Section.

2 Perturbing Hamiltonian

The hydrogen atom interacts with a static external electric field E through an electric dipole inter-
action. This has the form

Hpert = −eE · r (1)

Here e is the electron charge (e = −|e|) and r is the displacement of the electron from the proton.
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3 Matrix Elements of the Perturbing Hamiltonian

The energy levels of the hydrogen atom are computed by diagonalizing the total Hamiltonian. We
do this in the basis of eigenstates of the unperturbed Hamiltonian:

〈N ′L′M ′|H + Hpert|NLM〉 = EN δN ′NδL′LδM ′M + 〈N ′L′M ′|Hpert|NLM〉 (2)

Unperturbed states with the same principle quantum number N are degenerate in energy in the
nonrelativistic Schrödinger equation for the hydrogen atom (neglecting all other perturbations). As
a result, we must diagonalize the perturbation within each N multiplet before applying the standard
machine of perturbation theory, which has been developed for nondegenerate states.

We make the approximation that the diagonalizations can be carried out within each N multiplet
independently. The validity of this assumption will be discussed in Sects. 8 and 9. As a result of
this assumption it is necessary to construct the matrix elements

〈NL′M ′|(−eE · r)|NLM〉 (3)

and then to carry out the diagonalization of this N2 ×N2 matrix.

4 Symmetry Reduces Computational Complexity

The calculation is simplified by choosing our coordinate axes carefully. To this end we choose the z
axis in the direction of the electric field E. In this coordinate system −eE · r = −e|E|z. Next, we

replace |E| → E and z = r cos(θ) =
√

4π
3 rY

1
0 (θ, φ). The matrix elements to be computed are

〈NL′M ′| − eE · r|NLM〉 = −eE
∫

∞

o

RNL′(r)rRNL(r)dr ×
√

4π

3

∫

Ω

Y L′
∗

M ′ (Ω)Y 1
0 (Ω)Y L

M (Ω)dΩ (4)

The angular integral provides useful selection rules. First, ∆L = ±1, 0. By parity arguments, the
integral with ∆L = 0 is zero. The only relevant integral is therefore

A(L,M) =

√

4π

3

∫

Ω

Y L∗

M ′ (Ω)Y 1
0 (Ω)Y L−1

M (Ω)dΩ = δM ′M

√

(L+M)(L−M)

(2L+ 1)(2L− 1)
(5)

with 1 ≤ L ≤ N − 1. It is useful to observe that the integrals are unchanged under M → −M .
The radial integral is

R(N,L) =

∫

∞

0

RN,L(r) r RN,L−1(r) dr = −3

2
a0 N

√

N2 − L2 (6)

Here a0 is the Bohr radius of the hydrogen atom and L is in the range: 1 ≤ L ≤ N − 1.
For the N = 3 multiplet the 9 × 9 matrix to be diagonalized has the structure
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0 0
1 +1
1 0
1 −1
2 +2
2 +1
2 0
2 −1
2 −1

(7)

The two columns on the right provide information about the L and M values defining the rows and
columns of this matrix. The non zero matrix elements are indicated by *, all other matrix elements
are zero.

What this result makes clear is that the matrix can be rewritten as the direct sum of a number
of smaller matrices, each identified by different values of the magnetic quantum number M :





























∗
∗

∗
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∗
∗

∗





























2 +2
1 +1
2 +1
0 0
1 0
2 0
1 −1
2 −1
2 −2

(8)

This matrix has been transformed to block-diagonal form. For each value ofM there is an (N−|M |)×
(N − |M |) block matrix along the diagonal with basis vectors | L

M
〉, L = |M |, |M | + 1, · · · , N − 1.

Furthermore, the matrices associated with M and −M are identical. Diagonalization of either
provides the spectrum of eigenvalues and eigenvectors for both. For the N = 3 multiplet it is only
necessary to diagonalize one 3× 3 and one 2× 2 matrix to compute all eigenvalues and eigenstates.
The 1× 1 matrices are already diagonal. There is a total of 3 different matrix elements to compute.

5 N = 4

The N = 3 case is almost too simple to compute. We therefore carry out the computations for the
N = 4 multiplet. In this multiplet there is a total of 16 states |4LM〉, with L = 0, 1, 2, 3 and for
each L, −L ≤ M ≤ L. There is nominally a total of 162 = 256 matrix elements to compute, of
which most are zero (by symmetry) and the rest are simply related to each other (by symmetry).

Each matrix element is a product of two factors: a radial factor and an angular factor. We list
these factors below. The radial factor is obtained by evaluating Eq.(6)

L = 3 2 1

R(4, L) = 1
a0

∫

∞

0
R4,L(r)rR4,L−1(r)dr =

3

2
· 4 ·

√
7

3

2
· 4 ·

√
3 · 4 3

2
· 4 ·

√
3 · 5 (9)

and the angular factor is obtained by evaluating Eq.(5).
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A(L,M) =

√

(L+M)(L−M)

2L+ 1)(2L− 1)

M
±2 ±1 0

3

√

5 · 1
7 · 5

√

4 · 2
7 · 5

√

3 · 3
7 · 5

L 2

√

3 · 1
5 · 3

√

2 · 2
5 · 3

1

√

1 · 1
3 · 1

(10)

These 3+6 = (N−1)+ 1
2N(N−1) = 1

2 (N−1)(N+2) input data are used to construct the 4×4,
3 × 3 and 2 × 2 matrices associated with M = 0, M = ±1, and M = ±2 for the N = 4 multiplet.

For the 4 states with M = 0 we construct the matrix of the perturbation hamiltonian:

M = 0
3

2
× eEa0 ×















0 4 ·
√

5 · 3
√

1·1
3·1

0 4 ·
√

4 · 3
√

2·2
5·3

0 4 ·
√

7
√

3·3
7·5

0















(11)

The basis vectors are |N = 4, L,M = 0〉 = |N = 4,
L
M

〉, ordered in L from smallest (L = 0) to

largest (L = 3). This matrix is real and symmetric. Only the diagonal matrix elements (all 0) and
the nonzero matrix elements above the main diagonal are shown.

The eigenvalues and eigenvectors are:

Energy

∆E

∣

∣

∣

∣

0
0
〉

∣

∣

∣

∣

1
0

〉
∣

∣

∣

∣

2
0
〉

∣

∣

∣

∣

3
0
〉

12
√

5/20
√

9/20
√

5/20
√

1/20

4 −
√

5/20 −
√

1/20
√

5/20
√

9/20

−4 −
√

5/20
√

1/20
√

5/20 −
√

9/20

−12 −
√

5/20
√

9/20 −
√

5/20
√

1/20

(12)

Eigenvalues are measured in units ∆E = 3
2eEa0. Here eEa0 is an electric dipole energy.

For the 3 states with M = 1 the perturbation matrix is:

M = ±1
3

2
× eEa0 ×









0 4 ·
√

4 · 3
√

3·1
5·3

0 4 ·
√

7
√

4·2
7·5

0









(13)

The basis vectors are |N = 4, L,M = ±1〉, ordered in L from smallest (L = 1) to largest (L = 3).
The eigenvalues and eigenvectors are:

Energy

∆E

∣

∣

∣

∣

1
±1

〉
∣

∣

∣

∣

2
±1

〉
∣

∣

∣

∣

3
±1

〉

8
√

6/20
√

10/20
√

4/20

0 −
√

8/20 0
√

12/20

−8
√

6/20 −
√

10/20
√

4/20

(14)
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The results remain the same for the matrix of states with M = −1.
For the 2 states with M = 2 (as well as M = −2) the perturbation matrix is:

M = ±2
3

2
× eEa0 ×

[

0 4 ·
√

7
√

5·1
7·5

0

]

(15)

The basis vectors are |N = 4, L,M = ±2〉, ordered in L from smallest (L = 2) to largest (L = 3).
The eigenvalues and eigenvectors are:

Energy

∆E

∣

∣

∣

∣

2
±2

〉
∣

∣

∣

∣

3
±2

〉

4 1/
√

2 1/
√

2

−4 −1/
√

2 1/
√

2

(16)

The states |N = 4, L = 3,M = ±3〉 are eigenstates of the perturbing hamiltonian with energy
eigenvalue 0.

The spectrum of Stark energies is similar to the spectrum of Zeeman energies. Measured in units
of N × 3

2eEa0, the energies and their degeneracies are

Energy/(N × 3
2eEa0) −3 −2 −1 0 +1 +2 +3

Degeneracy 1 2 3 4 3 2 1
(17)

Figure 1: Energy eigenvalues of the Stark perturbation in the N = 4 multiplet of atomic hydrogen.
The energies are shown as a function of the magnetic quantum number M (horizontal). The orbital
angular momentum L is no longer a good quantum number since rotational symmetry is broken by
the perturbation Hpert = −eE · r. This perturbation mixes states with the same M and different L.
Energy spacing is N × 3

2eEa0.

This spectrum of energy eigenvalues is shown in Fig. 1
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6 Arbitrary N

The nature of the Stark spectrum computed for N = 4 persists for higher (and lower) values of N .
However, the spacing between levels depends on N . It is simple to determine this N -dependence as
follows. We construct and diagonalize the 2×2 matrix for the states with arbitraryN andM = N−2.
This matrix mixes the states |N,L = N−2,M = N−2〉 and |N,L = N−1,M = N−2〉. The matrix

element is − 3
2eEa0×N

√

N2 − (N − 1)2×
√

(2N−3)(1)
(2N−1)(2N−3) = 3

2NeEa0. The eigenvalues of this 2×2

matrix are ± 3
2NeEa0. As a result, the spacing between adjacent Stark levels in the perturbed

multiplet is ∆E = 3
2NeEa0 and the spectrum is k × ∆E, with k = 0,±1,±2, · · · ,±(N − 1). The

degeneracy of the level with energy k∆E is N − |k|.

7 N = 1

For the ground state |NLM〉 = |100〉, there is no degeneracy, neglecting electron and nuclear spin.
As a result, perturbation theory for nondegenerate states can be applied. In first order there is no
effect. In second order we find

∆E100 = −
∑

ex.st.

−|〈NLM |(−eEz)|100〉|2
ENLM − E100

(18)

The sum extends over “all” excited states, the nonzero matrix elements are those with M = 0 and
L = 1, for which we have

|〈NLM | − eEz|100〉|2 = (eEa0)
2 × 28N7(N − 1)2N−5

3(N + 1)2N+5
(19)

The denominator in Eq.(18) is the energy difference EN − E1 = − 1
2mc

2α2( 1
N2 − 1

12 ). Here mc2 is

the electron rest energy, α = e2

~c is the fine structure constant, and − 1
2mc

2α2 is the ground state
energy of the hydrogen atom. With these results, we find numerically

∆E100 = − (eEa0)
2

1
2mc

2α2
×

∞
∑

N=2

N2

N2 − 1
× 28N7(N − 1)2N−5

3(N + 1)2N+5

Maple−→ −2E2a3
0 × 0.9158144726... (20)

The polarizability, αp, of the hydrogen atom is related to its ground state energy change in an
electric field by ∆E100 = − 1

2αpE
2. Comparing this definition of the classical polarizability with

the quantum mechanical result in second order perturbation theory, we find αp = 3.663257890 a3
0.

The polarizability can be computed by exactly solving for the ground state in the presence of the
external electric field [2]. It is αp = 9

2 a
3
0.

This perturbation result is a little too small, for two reasons:
1. We have not carried out the perturbation calculation beyond second order.
2. The bound states over which the summation takes place do not constitute a complete set of

states. “All” the states include scattering (E > 0) states with L = 1 as well as the bound states
with L = 1.

Remark: Neglecting a subset of the complete set of states has two effects. First, the perturbed
energies cannot be estimated correctly. Second, it is not possible to localize a particle to a delta
function: the minimum uncertainty diameter in configuration space is determined by the subset of
neglected states. This problem occurs in the Dirac theory of the electron. Neglecting the “negative
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energy” states predicted by the Dirac equation is responsible, in the same way, for our inability
to localize any state in configuration space of the Dirac equation to less than about a Comptom
wavelength: λC = ~

mc .

8 Overlap of Multiplets

The diagonalizations above have been carried out assuming that adjacent principal quantum number
multiplets are sufficiently isolated so that matrix elements between states with N and N ± 1 are
unimportant. Multiplets N and N + 1 begin mixing when the highest energy of multiplet N ,
EN + (N − 1)N(3

2eEa0), is approximately equal to the lowest energy of the next higher multiplet,
EN+1 −N(N + 1)(3

2eEa0). The mixing condition is

−mc
2α2

2N2
+ (N − 1) × 3

2
eEa0N ≃ − mc2α2

2(N + 1)2
− (N + 1 − 1) × 3

2
eEa0(N + 1) (21)

For fixed electric field E the eigenstates begin to overlap when

2N + 1

(2N)N2(N + 1)2
=

3
2eEa0

1
2mc

2α2
(22)

For small electric field E, the value of N at which overlap occurs is

NO.L. ≃
(

1

2
mc2α2/

3

2
eEa0

)1/4

(23)

For example, in an external electric field of strength 100, 000 V/cm [1], NO.L. ≃ (13.6/(1.5∗105∗
0.5 ∗ 10−8)1/4 ≃ 6.5.

9 Sparking

The Coulomb potential, in the presence of a constant static electric field E, is nonbinding. The

total potential VTot = − e2

r − eEz is shown along the z axis in Fig. 2. This potential has a local

maximum at z =
√

e2/(eE) whose value is Vcb = −2
√

(e2/a0) ∗ (eEa0) (cb = Coulomb barrier).
No bound state is stable. States with Re(E) > Vcb are not localized. They are extracted from the
hydrogen atom by a process akin to sparking. States with Re(E) < Vcb will be confined to the
region around the proton (|z| <

√

e2/(eE)) for a time determined by the imaginary part of the
energy, Im(E). The escape time behaves as ∼ e−~/Im(E). Except for states with energies very close
to Vcb, the localized states will remain bound long enough for experimental purposes. The complex
energies associated with the non squareintegrable wavefunctions can be computed using the powerful
techniques of complex scaling that are beyond the scope of this manuscript.

The Coulomb barrier height Vcb corresponds to a principal quantum number N determined by

−1

2
mc2α2 1

N2
sp

= −2

√

e2

a0
× eEa0 (24)

Since e2/a0 = mc2α2,

Nsp =

(

3

64

)1/4 ( 1
2mc

2α2

3
2eEa0

)1/4

= 0.47 ∗NO.L. (25)
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In short, the atom will be pulled apart the by external electric field at values of N smaller than
those at which the adjacent principal quantum levels begin to overlap.
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Potentials in an External Electric Field
-e*e/r ; -eEz ; -e*e/r - eEz

Figure 2: The total potential is the sum of the Coulomb potential, −e2/r, and the potential due
to the external electric field, −eEz. This potential has a maximum that extends to +∞ and a
minimum that extends to −∞. It is therefore not a binding potential: all states that are localized
near the proton (at the origin) eventually leak away to z → ∞. The decay time is exponentially
large, and can be neglected for all practical purposes except for states with E very close to Vcb.

10 Conclusion

We have exploited symmetry to reduce the computational complexity of the Stark perturbation

problem. We choose as an unperturbed set of basis vectors the hydrogen bound states |N L
M

〉 =

ψNLM(r, θ, φ) = 1
rRN,L(r)Y L

M (θ, φ). We also choose our z axis in the direction of the external electric
field E. We apply symmetry arguments to the matrix elements

〈N ′L′M ′|Hpert|NLM〉
Since r is a vector operator (Rank 1 tensor operator), all matrix elements vanish unless ∆L =
±1, 0, by the Wigner-Eckart theorem. Since r has odd parity, the matrix elements with L′ = L or
∆L = 0 vanish. By SO(2) rotational symmetry the matrix elements with M ′′ 6= M all vanish. By
reflection symmetry in a plane containing the z axis, matrix elements with M are equal to those
with −M . Finally, we make an approximation that the mixing between principal quantum levels
can be neglected compared to the intra-level matrix elements: ∆N = 0. The three symmetries and
one approximation yield the simplification:
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〈N ′L′M ′|Hpert|NLM〉 = δN ′NδM ′MδL′,L−1 eEa0 R(N,L) A(L,M)

Simple explicit expressions exist for the two factors on the right. The N2 ×N2 perturbation matrix
for the Nth principal quantum level can be written as the direct sum of smaller matrices: one N×N
and two k × k matrices, with k = 1, 2, · · · , N − 1. The two k × k matrices are identical, courtesy
of planar reflection symmetry. For each k × k matrix only k − 1 different matrix elements need
be computed. Each nonzero matrix element is the product of two factors: a radial factor and an
angular factor. The matrices can be diagonalized separately. The energy eigenvalues have the form
k × ∆E, where ∆E = N × 3

2eEa0. The spectrum has the regular form shown in Fig. 1.
This simple treatment breaks down as N increases. It can break down in two ways:
1. The perturbed states in two adjacent principal quantum levels can begin to overlap.
2. The energies of the states in level N are higher than the Coulomb barrier height. They are

therefore unbound.
We have seen the “sparking” occurs before overlap of adjacent principal qunatum levels takes

place.
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