1. Construct an analytic expression for the transmission probability, $T(E)$, for an electron through a barrier of length L (in Angstroms) and constant potential V (in electron volts). Use asymptotic conditions $V_L = V_R = 0$. Choose L in the range $4 \leq L \leq 16$ and V in the range $-8 \leq V \leq +8$. Plot $T(E)$ vs. E from $E = 0$ to $E = V + 10$, or at least until 3 peaks are visible.

2. Construct a code to compute the transfer matrix for an arbitrary series of potentials V_i of width δ_i (eV. and Ang.). Test your code by reproducing your plot of Problem #1.

3. Apply your code to a piecewise constant potential with three pieces: (V_i, δ_i), $i = 1, 2, 3$. Use $V_1 = V_3 = V$, where V is the potential that you used in Problems #1 and 2. Use $\delta_1 = \delta_3 = L$, where L is the length that you used in Problems #1 and 2. Use $V_2 = 0$ and $\delta_2 = L/2$. Assume as usual $V_{\text{left}} = V_{\text{right}} = 0$. Plot $T(E)$ vs. E in the same energy range used previously. What do you think is responsible for the peaks? Can you estimate the energy at which the resonances occur?

4. Apply your code to a piecewise constant potential with five pieces: (V_i, δ_i), $i = 1, \cdots, 5$. Use $V_{\text{odd}} = V$, where V is the potential that you used in Problems #1 and 2. Use $\delta_{\text{odd}} = L$, where L is the length that you used in Problems #1 and 2. Use $V_{\text{even}} = 0$ and $\delta_{\text{even}} = L/2$. Assume the usual boundary conditions. Plot $T(E)$ vs. E as above. What do you see? Do the peaks split? Remarks? Guesses? Extrapolate your guesses to a similar piecewise constant potential with $2n + 1$ pieces.