1. The Hamiltonian for a classical harmonic oscillator can be written in many different forms, such as (use $\omega = \sqrt{k/m}$)

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

$$H = \frac{1}{2}(P^2 + Q^2)\hbar\omega$$

a. Find a canonical transformation from the familiar coordinate x and momentum p to their dimensionless counterparts Q, P.

b. Check that the Hamilton equations of motion are satisfied for both sets of coordinates.

c. To go from classical to quantum mechanics, Schrödinger tells us to replace $x \rightarrow \hat{x}$ and $p \rightarrow \hat{p}$ and require that these operators satisfy the commutation relations $[\hat{p}, \hat{x}] = \hbar/i$. What commutation relations does this force the operators \hat{Q}, \hat{P} to have?

2. The Lorentz force on a particle of charge q moving with velocity \mathbf{v} in the presence of electric and magnetic fields \mathbf{E}, \mathbf{B} is

$$\mathbf{F} = q\left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B}\right)$$

a. Express \mathbf{E} and \mathbf{B} in terms of the vector and scalar potential \mathbf{A} and ϕ.

b. Find an expression for the total derivative $d\mathbf{A}/dt$ in terms of its partial derivatives and \mathbf{v}. Explain exactly how this expression is derived.

c. Expand $\frac{1}{c}\mathbf{v} \times (\nabla \times \mathbf{A})$.

d. Plug the expressions from b. and c. into a. to find an expression of the form $\mathbf{F} = -\nabla U +$ the total time derivative of something.
e. What is U? What is “something” and why isn’t it important?

f. Construct the Lagrangian for the motion of a charged particle in the presence of an electric and magnetic field: \(L = \frac{1}{2}m\mathbf{v} \cdot \mathbf{v} - U \).

g. Construct the momentum conjugate to \(x \) in the usual way: \(\mathbf{p} = \frac{\partial L}{\partial \dot{\mathbf{v}}} \).

h. Use the standard (Legendre) transformation to construct the Hamiltonian from \(L \): \(H = \mathbf{p} \cdot \dot{\mathbf{v}} - L \), and express \(H \) as a function of \(x, \mathbf{p}, \mathbf{A} \).
i. Verify that the Hamiltonian equations of motion give the correct result.

3. Compute the thermal expectation value for a quantum harmonic oscillator with angular frequency \(\omega \). Recall that

i. The occupation probability of a state with energy \(E_n \) is proportional to the Boltzmann fact: \(P_n \simeq e^{-\beta E_n} \).

ii. Show \(P_n = e^{-\beta E_n}/Z \), where \(Z \) is the partition function.

iii. Use \(E_n = (n + \frac{1}{2})h\omega \).

a. Show \(\langle E \rangle = (\langle n \rangle + \frac{1}{2})h\omega \). What is \(\langle n \rangle \)?

b. How many modes of the electromagnetic field exist in the (angular) frequency range \(\omega \) to \(\omega + d\omega \)?

c. Compute the mean energy per unit volume in the electromagnetic field when it is in thermal equilibrium at temperature \(T \) \((\beta = 1/kT) \) with its surroundings. Show that this energy consists of two terms, one of which is proportional to \(T^4 \) and the other of which diverges.

4. The nonrelativistic hamiltonian that describes the interaction of a charged particle with the electromagnetic field is

\[
H = \frac{1}{2m}(\mathbf{p} - \frac{q}{c}\mathbf{A})^2 + q\phi
\]

In quantum mechanics \(\mathbf{p} \rightarrow \langle h/i \rangle \nabla \) and the hamiltonian acts on a wavefunction \(\psi(x,t) \).

a. Assume that the wavefunction is changed by a constant phase \(\psi \rightarrow \psi' = e^{i\alpha}\psi \). Show that \(\psi' \) satisfies the original Schrödinger equation with the original vector potential \(\mathbf{A} \).

b. Assume that the wavefunction is changed by a nonconstant phase \(\psi \rightarrow \psi' = e^{i\alpha(x,t)}\psi \). Show that \(\psi' \) does not satisfy the original Schrödinger equation with the original vector potential \(\mathbf{A} \).

c. Show that \(\psi' \) does satisfy the original Schrödinger equation, but with a new vector potential \(\mathbf{A}' = \mathbf{A} + \nabla \chi \). How is the gauge term \(\chi(x,t) \) related to the phase term \(\alpha(x,t) \)?

d. How does the scalar potential change: \(\phi \rightarrow \phi' + \text{?} \)?