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The effective quantum-mechanical Hamiltonian for a system of electrons in static electromagnetic
field is derived from quantum electrodynamics for electron velocities small compared with the
light velocity. The Hamiltonian obtained is almost identical with the one obtained by Bethe and
Salpeter, but there is a small difference, of which an explanation is given.

1. INTRODUCTION

In this paper the effective quantum-mechanical
Hamiltonian for a system of electrons in a static elec-
tromagnetic field is derived from the quantum electro-
dynamics for the case in which the velocities of the
electrons are sufficiently small compared with the light
velocity. It is assumed that the variation of the electro-
magnetic field through space is moderate in the sense
that its Fourier component has an appreciable value
only for those wavelengths which are sufficiently larger
than the Compton wavelength of the electron.

Different derivations have been given by Bethe and
Salpeter! and by Slater.? Bethe and Salpeter’s deriva-
tion of the Hamiltonian is based on Breit’s equation,
which can be regarded as a generalized Dirac equation.
They obtained the Hamiltonian from Breit’s equa-
tion through a technique which is somewhat similar
to the Pauli approximation to the Dirac equation. On
the other hand, Slater’s derivation is largely based on
classical considerations. The result of Bethe and
Salpeter and that of Slater are the same. It appears
obvious, however, that the derivation from quantum
electrodynamics is the most appropriate from the view-
point of the unified understanding of the basic laws
governing nature.

The Hamiltonian obtained here is almost identical
with the one obtained by Bethe and Salpeter and by
Slater, but there is a small difference, which we discuss
later. The Hamiltonian to be derived here is the

following:
1
H=2; b (1a)
1
2 8m362pj4 (1b)
+ 3 (¢/me) pi+ A (r) (10)

1H. A. Bethe and E. E. Salpeter, Encyclopedia of Physics,
edited by S. Fliigge (Springer-Verlag, Berlin-Gottingen—Heidel-
berg, 1957), Vol. 35, p. 88.

2 J. C. Slater, Quantum Theory of Atomic Structure (McGraw-
Hill Book Company, Inc., New York, 1960), Vol. II.
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—§<re2h2/m2c2> 5(x;—1s). (2g)

The notation is as usual: ¢ is the light velocity, —e is
the charge of the electron, and = is the mass of the
electron. r; is the position of the jth electron, p; is its
momentum, and §; its spin. The external electric field
E(r) and the magnetic field He(r) are in Gaussian
units. They are assumed to be independent of time.
They are derived from the scalar potential ¢ex(r) and
the vector potential A (r), respectively, according to

Eex(r) =—V¢ex(1'), (33.)
H, (r) =V xAx(r). (3b)
pex(T) is the charge density giving rise to the potential
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¢ex(r). Thus,
A¢ex (r) = 47rpex (r) . (4')

The vector potential is so chosen that its divergence
is zero:

V'Aex(r) :0 (5)

The symbol 1 means the unit dyadic, and 4(r) is the
Dirac & function. p/# means (p?)? and 7z means
| rj—1i .

Each term of the Hamiltonian (1a)-(2g) allows its
classical interpretation. The terms (1a), (1c), (1d),
and (le) constitute the well-known Hamiltonian of a
system of point particles under the influence of the
Lorentz force

— eBex (1;) — (¢/¢) [v; *Hex (1) ], (6)

where v; is the velocity of the particle j. The term (1b)
comes from the variation of mass due to relativity.
(2a) is the Coulomb interaction between electrons.
(2b) is a term which was derived by Darwin® using
retarded potential, but a simpler explanation is the
following. According to the Biot and Savart law, the
magnetic field produced by the orbital motion of the
electron £ is given by

H;(r)=(e/c) (x—11) xvi/| r—17 |2 (7
This magnetic field is derived from the vector potential

i‘:(r—fk) (r—1) | 1 ]-Vk. (8)

Au(r)=—
<(r) 2 |r-np |r—r|

This A(r) is chosen to be divergence-less. The effect
of this field on the motion of the electron j can be
taken into account by changing the A (r;) in (1c) and
(1d) to Aex(r;) +Ax(r;). Neglecting the term quadratic
in Ax(r;), and the cross term between A.(r;) and
A, (r;), the only new term in the Hamiltonian is

(e/mc) pj+Ax(x;). 9

Putting vi=pi/m in (8) and using it in (9) and sum-
ming it over 7 and k(j), we obtain twice (2b). This
result should be divided by 2, since the sum consists
of pairs of identical terms, that is, p;-Ax(r;) = pr-A;(1%).

The terms (1h) and (2g) can be interpreted as due
to the spread of the charge of the electron, which leads
to a modification of the terms (le) and (2a). In the
first approximation, this modification is represented by
the addition of (1h) and (2g), respectively, provided
that the spread is spherically symmetrical and the mean
square radius is (72 )y, =% (h/mc)>

Now we have finished with those terms that do not
contain the spin operators. The remaining terms con-
cern the spin of the electron. The term (1f) is the
interaction of the spin magnetic moment of the electron

3C. G. Darwin, Phil. Mag. 39, 537 (1920).

with the external magnetic field. (1g) is the term that
causes the precession of the spin in the external electric
field. The explanation of the origin of this term is not
simple; readers are referred to the paper by Thomas.*
(2¢) is the interaction of the spin of the electron with
the magnetic field produced by the orbital motion of
the other electrons. (2d) is of the same nature as (1g)
and expresses the interaction of the spins of electrons
with the electric field produced by the other electrons.
(2e) is the mutual interaction between spin magnetic
moments that are not mutually penetrating, while (2f)
takes account of the mutual penetration.

The above Hamiltonian is almost identical with the
one derived by Bethe and Salpeter. However, there is
a small difference: the terms (1h) and (2g) are absent
in the Bethe-Salpeter Hamiltonian, while their Hamil-
tonian contains

Z (tehi/4m?c?) pj*Eex (1;)

— 2 (ieh/4m*c) (py— i) - (Tin/746%),

i<k

(10a)
(10b)

which is absent in our Hamiltonian. There is some
relation between (1h) and (2g) and (10a) and (10b).
Namely, the mean values of (1h) and (2g) for a state
represented by a real (not complex) wave function are
equal to the mean values of (10a) and (10b) for the
same state, respectively. However, the operators (1h)
and (2g) themselves are not identical with (10a) and
(10b), respectively. That (1h) and (2g) are preferable
to (10a) and (10b) is obvious from the fact that (10a)
and (10b) are not Hermitian. Thus, (10a) and (10b)
do not fit the pattern of quantum mechanics.

The deficiency of (10a) and (10b) comes from the
inadequate normalization of the wave functions ¥, (p)
introduced by Bethe and Salpeter. In their article the
¥.(p) are defined from the Fourier component y(p)
of the Dirac four-component wave function through a
transformation which is very similar to the Foldy-
Wouthuysen transformation.® Denoting the Foldy-
Wouthuysen transformation by e*, the above trans-
formation is expressed by

‘//+(P)> By E N\
=) ¢¥(p),
(w_(p) ( 25, )

where E,=c(m?*+p?)% and Ey=mc? Since S is a
unitary transformation, [(Ey+E,)/2E, e’ is not
unitary, so that the Hermitian character of the Hamil-
tonian is not conserved through this transformation.
This is the reason why Bethe and Salpeter obtained
the non-Hermitian Hamiltonian. If the transformation
¢S itself is used instead of [(Eo+E,)/2E,fe® to
define ¢, (p) from ¢ (p), the Bethe-Salpeter method
would lead to the same result as ours. However, their

(11)

4 L. H. Thomas, Nature 117, 514 (1926).
5L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950).



method of derivation is not identical with ours, and
the primary purpose of the present paper is this new
derivation.

2. QUANTUM ELECTRODYNAMICS

We start with the quantum electrodynamical Hamil-
tonian

Hqg.=Huy+Hr+H¢+Hi+Hg, (12)
Ha= Z/hc(x2+k2)%
X[a*(ks)a(ks)+b*(ks)b(ks) ] d°, (13a)
He=3" f Ticke* (\) ¢ (k\) @, (13b)
A
Ho= [o()o(®) | =1 [ @y &, (130)
Hr=—(1/0) [§(0)-A(x) a¥, (13d)

Hy= [p()gus(x) &7 (1/0) [§(5) - Aox(e) @, (13¢)

where Hjy is the rest energy plus kinetic energy of
electrons and positrons, Hg is the energy of the radia-
tion field, H¢ is the mutual interaction of electrons and
positrons, Hy is the interaction between the electron-
positron current and the radiation field, and Hg is the
interaction of electrons and positrons with external
field. a(ks), b(ks), and c(k\) are the annihilation
operators of an electron, a positron, and a photon,
respectively, while a*(ks), etc. are the corresponding
creation operators. The argument k of these operators
is the momentum of the particle in unit of %. The
parameter s designates the spin state of the electron
or the positron, s=1, 2 corresponding to the values
4174 of the z component of the spin. The parameter
A(=1, 2) in ¢(k\) and ¢*(k\) designates the polariza-
tion of the photon. « in (13a) is defined by x=mc/h.
A(r) in (13d) is an operator defined by

A(x) = (2) 5 (he/) L)) o+ (~1e0) ]

-e(k)) exp (ik-r) d*k, (14)

where e(k\) is the unit vector in the direction of the
polarization. The e(k\) are chosen so that e(k\)=
e(—k)). The operators p(r) and j(r) in (13c), (13d),
and (13e) are defined by

p(r) =—%e(1=C)*(0)¥(r),
i) =—3ec(1=C)¥*(r) e (1),

(15)
(10)
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where ¥/(r) is a four-component operator

sa-or f(-25)

a(kl)

a(k2)
exp (ik-r) d°%,
b*(—Kk2)

(17

| —&*(—kt)

and C is a symbol which indicates that a(ks), ¢*(ks),
b(ks), and b*(ks) appearing to the right of this symbol
should be replaced by b(ks), *(ks), a(ks), and a*(ks),
respectively. In Eq. (17), ko means ko= («>+%?)%. « and
Bin (16) and (17) are the well-known Dirac matrices

0 ¢ I 0
Y ()
¢ 0 0 —1I
01 0 —1 1 0
a,=( , ay=< , o‘z=< ) (19)
10 i 0 0 —1

Quantum electrodynamics satisfies the requirement
of relativity, though this is not self-evident from the
forms of (12)-(13e). The relativistic structure of
quantum electrodynamics can be visualized in a
formalism which involves the longitudinal and scalar
photons, but an appropriate unitary transformation
leads to the formalism of (12)-(13e).

Quantum electrodynamics suffers from the well-
known divergence difficulties. If the Hamiltonian (12)
is to have any mathematical significance, it is necessary
to cut the integral (17) at some large value of %. This
cutoff destroys the relativistic invariance of the theory,
but we adopt this cutoff as an inevitable deviation
from relativity.

(18)

3. CREATION AND ANNIHILATION OPERATORS
AT A POSITION

It is convenient to introduce the operators

Ba(rs) = (2m) 2 f a(ks) exp (ik-r) @,  (20a)
* (£5) = (21) / a*(ks) exp (—ik-r) &%, (20b)
o(xs) = (2m) f b(ks) exp (ik-r) &,  (20¢)

S (xs) = (2m) f b*(ks) exp (—ik-r) d%. (20d)

These are Fourier transformations of a(ks), a*(ks),
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b(ks), b*(ks). Thus, they can be interpreted as the
operators which create or annihilate an electron or a
positron at a position r.

We also use the notations

$a(r1)
$u(r) = , (21)
$a(12)
¢p(rl)
¢(r) = , (22)
¢ (12)
$a(rl)
$a(12) Ga(1)
¢(r) = = , o (23)
#*(r2) 1oy 7 (1)
| —g*(r1)

where 7" means transposition. From (20a-d) and (23)
we have

a(kl)

a(k2)

o(r)=(2n)% exp (tk-r) k. (24)

b*(—k2)
—b*(—Kk1)

4. NONRELATIVISTIC APPROXIMATION

The integrand of (13a) can be modified to some
extent without any influence on the main result to be
obtained in this paper. Thus, we can use the approxi-
mation

Hu=3 [Rad14+3 (/)= 3 (/0]

‘La*(ks)a(ks)+b*(ks)b(ks) Jd3%k  (25)

without changing the main result. Similarly, we can put
¥(6) = (2n) [[1=3 (B o/) — §(4/0)°]
a(kl) )

a(k2)
exp (ik-r) &%k, (26)

b*(—Kk2)
| —&*(—Kk1) )

These approximations are called the nonrelativistic
approximation in distinction from the nonrelativistic
cutoff mentioned at the end of Sec. 2.

From (24) and (26) we have

¥(r) =[1+(i/2¢)Ba-V+(1/8:%) Ade(r).  (27)

The Hermitian conjugate of (27) is
P*(r) =¢*(r) — (i/2k) Vo*(r) - e+ (1/8%) Ap™ (1)
(28)

Putting (27) and (28) into (15) and neglecting the
terms which are proportional to k= and x—* we have

p(1) =po(r) +pu(r) +p2(1), (29)
po(r) = —3e(1-C)¢* (1) o (r), (30a)
pi(r) = (ie/4x) (1= C)V-[¢*(r) efo(r) ], (30Db)
pe(r) = — (¢/166%) (1—C) {[Ag*(r) Jp(r)

+o*(r) A¢(r) +2[Vo*(r) ] ea- Vo (r)}.  (30c)

The neglected terms are unimportant for our purpose.
Similarly, we have

i(®) =jo(r) +is(x), (31)

Jo(r) = —2ec(1—C)p* (1) a9 (1), (32a)

j1(r) = (iec/4x) (1— C) {¢* (r) B Vo (r)
—[Ve*(r) ]-aaBp(r)}. (32b)

Here we have retained only the terms to the order of x~'.

If we put (23) into (30a—c) and (32a, b) and re-
arrange the order of the multiplication of the operators
using the well-known commutation rules, we obtain the
expressions in which the annihilation operators come
to the right of the creation operators. In this manipu-
lation the anticommutators such as [¢.(rs), ¢u*(rs) ]+
are treated as a constant §(0) although §(0) is not a
well-defined quantity. Then these §(0)’s cancel each
other and no trouble occurs. Final results are given
below. In obtaining these equations the well-known

relations
()
oy, =1 , etc. (33)
0 o,
were used.
po(r) = — e[ o™ (1) pa(r) — ™ (r) (1) ], (34a)

p1(r) =— (e/26) V - [do* (1) 80,6s™" (r) +ba" (1) 78¢5 () ],

(34b)
p2(r) = — (¢/8%) { ALpa™* (T) (1) — 5™ (1) 5 (r) ]
—2i[V¢*(r) ]-[6 x V¢u(r) ]
+2i[Vgp*(r) J-[6 x Veu(r) ]}, (34c)
jo(r) =dec[¢y* (1) 60,97 (r) — ™ (r) 06 (r) I, (35a)
j1(x) = (dec/2«) {¢a* (1) Vopa (1) — [V * (1) Jpa (1)
— ¢ (1) Voo (1) +[ Vo™ (1) Jbu (1)
+iV % [¢* (1) 8¢ (1) — o™ (1) 6u(r) 1} (35b)



5. FIRST-ORDER ENERGY

Some parts of the Hamiltonian (12) are diagonal
with respect to the numbers of electrons, positrons,
and photons, while other parts are nondiagonal. We
can assume that the effect of the latter parts is small
compared with that of the former. This assumption
will be valid, provided that the cutoff mentioned in
Sec. 2 is adequately made. Thus, in the first approxi-
mation, we can omit the terms which are nondiagonal
with respect to the numbers of electrons, positrons,
and/or photons. The resulting Hamiltonian gives the
first-order energies of the states with definite numbers
of electrons, positrons, and photons. In this paper we
are concerned only with those states involving a certain
number of electrons but no positrons or photons. In
order to compute the first-order energies of these states,
we need only those terms which are effective (i.e., do
not give a vanishing result) when operating on state
vectors involving only electrons but no positrons or
photons. This part of the Hamiltonian will be called
the first-order energy of the system of electrons. This
first-order energy is investigated in this section.

In the first place, from (25) and (20a-d) we have

A A2
Hy= Z/ﬁcm;ba* (rs) (1 —5;2—-@)@ (rs) d¥r

A A?
+Z/ﬁcx¢b*(rs)<1—————>¢b(rs) . (36)
3 2k% 8k*
The second term in (36) is ineffective when operating
on state vectors involving only electrons, so that the
first-order energy due to Hy is given by

2
Hy W= Z/hquba* (rs) (1—A——A—>¢a(rs) @r. (37)
3 2k 8t
The operator in the configuration space which corre-
sponds to Hx® is obviously (1a) plus (1b) apart from
an additive constant nmc?, n being the number of
electrons. (Note k=mc/f.) The additive constant
represents the rest energy of the electrons.

The first-order energy due to Hpg is zero, because Hg
is ineffective when operating on state vectors involving
only electrons.

Next, we consider the contribution from H¢. From
(13c¢) and (29) we can write

Ho=} [Too®) +01() +2(6)]

Loo(®) +ou() +u(r) ] | 1T [F Pr ¥, (38)
The integrand in the right-hand side of (38) consists of
the terms of the form p,(r)p, (1) | r—r’ |1 Those terms
with u+v»>2 can be neglected as small terms. Those
terms with u+v= odd are nondiagonal with respect
to the numbers of electrons and positrons, and so do
not contribute to the first-order energy. Therefore, we
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have to retain only the four terms
po(T) po(r) [1—1" 7,
pi(1)pr(t') | 1—1" 7,

po(D) (1) |r—1" |7,
and
pa(T) po(r’) [r—1" [,

Of these four terms, pi(r)p:(r’) | r—1’ |~! proves to con-
tribute a type of self energy of the electrons, and so it
will be omitted. The two terms po(r)p(r') |r—1' [
and p(r)po(r’) |r—1’ | prove to contribute equally.
Using (34a) and (34c) we can write the first-order
energy due to H¢ as

HoO =3¢ [ 9 (0)0u(0) * () alx") | 1= [ r 57
+3(e/0* [ (AL8.* (1)) )
Xt (W)gult) | 1=1 [ dr @’
—1i(e/0? [[¥6,()1-[6 x V6, (x)]

X * (1) pa(t) | r—1" |72 &P &%, (39)
Integrating by parts and using the formula
Alr—r'[=—dr §(r—1'), (40)

we obtain

HoW=1¢ f ¢a* (1) da (1) ¥ (1) $u(¥) | 1—1' [ dPr &'

(41a)
—br(e/6)? (D)) 6* () (1) 3 —T) Py &5
(41b)
+ii(e/x)? / ¢ () [V | 1—1" [71]-[6 X V(1) ]
Xoa* (1) pa(r') &r & (41c)

The operators in the configuration space corresponding
to (41a), (41b), and (41c) are (2a), (2g), and (2d),
respectively, apart from an additive constant of a type
of self-energy.

The first-order energy due to Hy is zero, because Hr
is nondiagonal with respect to the numbers of particles.

Proceeding to Hg, we can write from (13e), (29),
and (31)

Ho= [Too(6) +01(2) +2(1) oun (5) @

— (1/0) [T +5x(0) J-Axr) . (42)
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The second term in the first integral and the first term
in the second integral are nondiagonal with respect to
the numbers of electrons and positrons, so they do not
contribute to the first-order energy. Using (34a), (34c),
and (35b), we can write the first-order energy due to
Hg as

H=—e [ 9 (1)6u 1) gux(x)
—(e/3¢) [1a00* (06.(6)]
—2i[Vea*(r) 1-[8 % Vu(r) I} dex(x) &'r
—i(e/26) [ 164 (©) Vu(X) ~ [V (1) Jou(0)

+iV % [¢* (1) 664 (1) ]} - Aex (1) dr.

Integrating by parts and using (3a), (3b), (4), and
(5) we obtain

(43)

Hy®W=—¢ f ¢a™* (1) b (1) Pex (1) dPr (44a)

+ (me/2¢) / ¢a* (1) pa(T) pex (1) d*r (44b)

+(ie/4?) [ 90 (O)Ex(r) [0 % V()] @ (440)

—i(e/) [6XOVou(D) T-A(r) d (440

+(e/2x) / ¢a* (1) 6¢a(r) “Hex (1) dPr. (44e)

The operators in the configuration space which corre-
spond to (44a-e) are (le), (1h), (1g), (1c), and (1f),
respectively.

6. SECOND-ORDER EFFECT. 1.
VIRTUAL ELECTRON-POSITRON PAIR

Consider the first term of the second integral in (42)

He'=—(1/c) / jo(1) - Aux(r) &r. (45)
According to (35a), Hg' consists of two terms, one of
which creates while the other annihilates, an electron—
positron pair. Therefore, Hg' gives rise to a second-
order energy. This second-order energy is investigated
in this section. Since we are interested in the second-
order effect on the states involving only electrons, the
virtual intermediate states giving rise to the second-
order effect are those states which are derived from the
initial state through creation of an electron—positron
pair, but not through annihilation of a pair. In the

following treatment, the virtual excitation energy for
the creation of an electron-positron pair will be put
equal to 2mc?, neglecting the kinetic energies. Justifica-
tion of this neglect of the kinetic energy is given at the
end of this section.

The second-order energy due to Hg' is written as

Hy'®=—[Hy'Hd' 0/ 2me, (46)

where the superscript (1) means that only those terms
should be retained, which are diagonal with respect to
the numbers of electrons and positrons, and are actu-
ally effective when operating on state vectors involving
only electrons. From (46), (45), and (35a) we have

15/ ® == (¢/2m) [Rox(t) 67 (1) ,60(x)

X* (1) 80ypa*T (1) < Aex (1) dPr d¥'.  (47)
When operating on state vectors involving only elec-
trons, ¢s(rs)¢p*(r's’) can be put equal to 8:,:86(r—1'),
so that (47) becomes

Hy® == (&/2m) [ 6 (0067 (O)[Aw®) F 7. (48)

Using the commutation relation we can write (48) as
Hy'® = (&/2me2) [ 6,5 u(0) [A(6) F @, (49)

apart from an additive constant. The operator in the
configuration space which corresponds to (49) is
obviously (1d).

We have made the assumption that the virtual
excitation energy of an electron—positron pair can be
put equal to 2mc? This assumption is justified as
follows. Consider the vector potential Ae(r) in (45)
decomposed to its Fourier components, and consider
the creation of an electron—positron pair induced by
the Fourier component of Aex(r) for wave number k.
As mentioned in the introduction, the Fourier compo-
nent of A () is assumed to have an appreciable value
only for those wavelengths which are sufficiently large
compared with the Compton wavelength of the elec-
tron. Therefore, we can assume that |k |<k. If the
wave numbers of the electron and the positron of the
virtual pair mentioned above are k’ and k’, respec-
tively, there must be a relation k’+k’’ =k, which means
the conservation of momentum. Then, if |k’ | Kk, we
can say that |k’ | <«. In this case, the virtual excita-
tion energy can be approximated by 2mc? On the other
hand, if |k’ | is not very small compared with x, we
conclude that |k’ | is also not very small compared
with «. In this case, the virtual excitation energy is
not approximated by 2mc?. This latter kind of virtual
excitation is never prohibited by the exclusion principle,
because the wave numbers of the electrons which are
present in the initial state are assumed to be very small
compared with . Therefore, this virtual excitation



occurs irrespective of the initial state, and one can
show that the contribution of this kind of virtual exci-
tation to the second-order energy is merely an additive
constant. On account of this situation we do not need
to use the exact virtual excitation energy for this case,
and we can put it equal to 2mc? for all cases.

7. SECOND-ORDER EFFECT. II.
VIRTUAL PHOTON

From (13d) and (31) we have
Hi=—(1/¢) / [io(r) +in (1) T-A(D) &, (50)

The first term on the right-hand side is nondiagonal
with respect to each of the numbers of electrons, posi-
trons, and photons. It gives rise to a second-order
energy which is merely an additive constant. Therefore,
we consider the second-order effect due to

1y == (1/0) [1(0)-A(x) av. (51)
This operator is nondiagonal with respect to the number
of photons, but it is diagonal with respect to the num-
bers of electrons and positrons. As can be seen from
(14), the operator A(r) creates and annihilates a
photon. Since the energy of the photon with wave
number k is 7ick, the second-order energy due to Hy' is

47:252 ;/[jl(r) -e(kN)e(kN) i (r) ]
X exp [tk (r—1') Jk=2 d% d%' d*%, (52)

where the meaning of the superscript (1) is the same
as in the lines following (46).
We introduce the formula

> e(kn)e(kn) =1— (kk/Z2).

H/®=—

(53)
Furthermore, we use
f [1— (Kk/F) T exp (ik-1) @k =n[14 (r/r) 1/r.

(54)
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Then, (52) becomes

Hyo=—— [ 15901 1= |

+(x—r) @—1) | r—r' |75 (x") } © & d?'. (55)
Using (35b) we have
12/0=— (/168) [ (i6,* (£) ¥6u(r)
—i[ Vo™ (1) Jpa(r) — V % [¢a*(r) 66 (1) ]}
[ r—1 [P+ (@—r) 1) [r—1' [*]
- {igpa* (r) V'pa (1) —i[ V'pa™ (') Jpa(1")
— V' %x[¢a* (") 8¢.(r") ]} &Pr &?'. (56)
Integrating by parts we obtain
/o= [0 [V
[ 1 : +(r~r’) (rl*r’)]
|r—r"| |r—1' |2
¥ () Vo (t)) dPr ¥’ (57a)
ie? r—r’ X
sl e @vem |
¢ (1) 8¢, (r") &% &% (57b)
e X 1 3(x—r1') (r—1')
+§';§f¢'a (r)6¢a(r) '[I r—r Ig lr_r/ ‘5 :l
cpa* (1) 8pa (1) d¥r d%" (57¢)

_,;_/ $u* () 6a(1) 3(r—T) ™ () 6 (') &P 7.
(57d)

The integral in (57c) is to be carried out excepting the
region of | r—r’ | <e, where ¢ is a small radius.

The operators in the configuration space which corre-
spond to (57a-d) are (2b), (2c), (2e), and (2f),
respectively, and thus we have derived all the terms of
the Hamiltonian (1a)—(2g).



