QUANTUM MECHANICS I

PHYS 516

Problem Set \# 6 Distributed: March 9, 2016
 Due: With the Final Exam

1. Neutrinos with 3 Flavors: Assume neutrinos come with three flavors. The flavor eigenstates are not energy eigenstates. The three types of states are related by a 3×3 unitary transformation (neutrino mixing matrix):

$$
\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} \\
0 & 1 & 0 \\
-\sin \theta_{13} & 0 & \cos \theta_{13}
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
m_{1} \\
m_{2} \\
m_{3}
\end{array}\right]
$$

Use $\sin ^{2} 2 \theta_{12}=0.861 ; \sin ^{2} 2 \theta_{23}=0.97 ; \sin ^{2} 2 \theta_{12}=0.092$ (N.B: $\sin \theta_{13} \rightarrow$ $\sin \theta_{13} e^{-i \delta}$ and we have set $\delta=0$ for this problem set. There is one additional phase matrix that can be sandwiched between the last 3×3 matrix above and the mass column vector. It is a phase matrix

$$
\left[\begin{array}{ccc}
e^{i \alpha_{1} / 2} & 0 & 0 \\
0 & e^{i \alpha_{2} / 2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

which carries physical signifficance only if neutrinos are Majorana particles. You may ignore this matrix for the purposes of thes problem.
a. Assume that a decay produces a flavor-1 neutrino. Resolve this flavor state into energy states.
b. Propagate the energy states forward in time from $t=0$ to arbitrary time T.
c. Assume a detector has been set up a distance $L=c T$ away to detect neutrinos with any flavor. Compute the probability amplitude for detecting neutrinos each flavor. Use $E_{3}=6 E_{2}>0, E_{2}=4 E_{1}$ and T large enough so your plots show interesting things.
d. Compute the probability for detecting neutrinos of each flavor.
e. Do the probabilities sum to +1 ? (Hint: they better!)
2. Angular Momentum: Write down the eigenstates of J^{2} and J_{z}, with $\mathbf{J}=\mathbf{L}+\mathbf{S}$ for $l=2$ and $s=\frac{1}{2}$. Identify the eigenvalues of each eigenvector.

