
QUANTUM MECHANICS I

PHYS 516

Solutions to Problem Set # 3

1. Thermal Expectation Value: A harmonic oscillator with energy
spacing ∆E = h̄ω is in thermal equilibrium with a bath at temperature T .
Compute the mean energy of the oscillator, not forgetting to include the zero
point energy.

Solution:

Z =
∑
n=0

e−βh̄ω(n+ 1
2

) =
e−βh̄ω/2

1− e−βh̄ω
, 〈E〉 = − ∂

∂β
logZ = (n+

1

2
)h̄ω, n =

1

1− e−βh̄ω

2. Linear Chain: In one dimension, n particles, each of mass m, are
coupled to each other by springs of spring constant k. The two masses at the
ends are coupled to brick walls with similar springs.

a. Draw picture.
b. Compute the energy dispersion relation for the n modes.
c. What is the mean thermal energy in each mode?
d. What is the mean thermal energy in all modes taken together?
e. Set T = 0. What is the zero-point energy?

Solution:
a. See class notes.
b. In the mth mode the displacement of the jth atom is sin

(
mjπ
n+1

)
, from

which we find mω2 = 2k − 2k cos
(
mπ
n+1

)
, which translates into ω(m) =

2ω0| sin
(
mπ/2
n+1

)
|.

c. 〈E〉m = (n(m) + 1
2
)h̄ω(m), n(m) = 1

1−e−βh̄ω(m)

d. 〈E〉 =
∑n
m=1 〈E〉m. There does not seem to be a closed form expres-

sion for this sum.
e. 〈E〉Z.P t.En. = 1

2
h̄
∑n
m=1 2ω0 sin

(
πm/2
n+1

)
. The sum can be carried out

either by hand or by Maple:

〈E〉Z.P t.En.
h̄ω0

=
1

2

sinx+ cosx− 1

1− cosx
x =

π/2

n+ 1

1



For future convenience we expand this using (with x = π/2
n+1

)

ZP (n) =
1

x
− 1

2
− x

12
− x3

720
− x5

30240
− x7

1209600
− · · ·

If we search for the series: 2, 12, 720, 30240, 1209600 on the web the first hit
is A060055 in the Online Encylcopedia of Integer Sequences. It dates back
from a long time ago.

Note that this energy diverges linearly as n → ∞. For problems in D
dimensions the divergence goes like nD.

3. Quantum Surprise: Continuing the problem above ...
f. Place your finger on the mass at the kth position. What is the zero

point energy in the subchain with masses 1, 2, · · · k − 1? What is the zero
point energy in the subchain with masses k + 1, ...n?

g. Remove your finger and place it on the mass at position k + 1. What
is the zero point energy in the two subchains now?

h. Assume that the equilibrium spacing of the masses is a. What is the
force on your finger when it is placed on the kth mass? And which direction
is it in?

Solution: (f) If I place my finger on the mass at position k there are
k − 1 masses oscillating to the left and n − k oscillating to the right. The
energy V (k)/h̄ω0 is V (k) = ZP (k−1)+ZP (n−k) and the energy difference
between the state with a ’finger on the scale’ and without is

∆E = ZP (k− 1) +ZP (n− k)−Z(n) = −1

2
− π

24

(
1

k
+

1

n− k + 1
− 1

n+ 1

)
If the spacing between the brick walls is fixed at L and n is very large, then
the spacing between masses is aabout a = L/n and the expression above
becomes

∆E = −1

2
− πa

24

(
1

x
+

1

L− x
− 1

L

)
The graph of this is shown in Fig. 1. Note that the slope is positive for
0 < x < L/2, meaning that the force is to the left.

4. Mathematical Tricks: Like all the special functions of Mathematical
Physics, the Hermite polynomials satisfy Recursion Relations, Differential
Relations, and have Generating Functions:
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Figure 1: Change in the zero point energy for a string with n particles
separated by a distance a, with na = L and L scaled to 1. The force is to
the left for x < 1/2 and to the right for x > 1/2. The force is due to the zero
point energy and is a quantum phenomenon.
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Recursion Relations : Hn+1(x) = 2xHn(x)− 2nHn−1(x) 22.7
Differential Relations : d

dx
Hn(x) = 2nHn−1(x) 22.8

Generating Function : e2zx−z2
=
∑ 1

n!
Hn(x)zn 22.9

Use the connection between these classical polynomials and the harmonic
oscillator wavefunctions

ψn(x) =
1√

2nn!
√
π
Hn(x) e−x

2/2

to construct Recursion Relations, Differential Relations, and Generating Func-
tions for the harmonic oscillator wavefunctions.

Boldface points to tables in Abramowitz and Stegun.

Solution:

2xψn =
e−x

2/2√
2nn!
√
π

(2xHn) =
e−x

2/2√
2nn!
√
π

(Hn+1+2nHn−1) =
√

2
√
n+ 1ψn+1+

√
2
√
nψn−1

d

dx

e−x
2/2√

2nn!
√
π
Hn =

e−x
2/2√

2nn!
√
π

(
dHn

dx
− xHn

)
=

e−x
2/2√

2nn!
√
π

(2nHn−1 − xHn) =

√
2nψn−1−

1

2

(√
2
√
n+ 1ψn+1 +

√
2
√
nψn−1

)
=

1

2

(
−
√

2
√
n+ 1ψn+1 +

√
2
√
nψn−1

)

5. Modify the code you wrote for Problem # 2 in Problem Set # 2 to
compute the energy eigenvalues of the bimodal potential V (x) = 1

4
x4 − 5

2
x2.

Print the six lowest eigenvalues and plot the corresponding eigenvectors.
Discuss the results.

Solution: See Fig. 2.
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Figure 2: Six lowest eigenfunctions for the bimodal potential V (x) =
−5

2
x2 + 1

4
x4, normalized to one. The corresponding energy eigenvalues are:

−4.723518,−4.722843,−1.960872,−1.919549,−0.006859, 0.634634. black =
ψ0; red = ψ1; green = ψ2; blue = ψ3; cyan = ψ4; brown = ψ5. Notice the
symmetries of the wavefunctions.
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