
QUANTUM MECHANICS I

PHYS 516

Problem Set # 2

Distributed: Jan. 15, 2016

Due: January 22, 2016

1. Harmonic Oscillator 1: Plot the harmonic oscillator wavefunctions
for the ground state ψ0(x) and the five lowest excited states ψi(x), i = 1− 5.

ψn(x) =
1√

2nn!
√
π
Hn(x)e−x

2/2

where Hn(x) are the classical Hermite polynomials with standard normaliza-
tion: Hn(x) = (2x)n+ terms of lower degree.

Solution: The harmonic oscillator wavefunctions were constructed by
sweeping x from −5 tp +5 in small steps (dx = 0.01), defining ψ0(x) =
e−x

2/2/ 4
√
π, and then using the recursion relation

ψk+1(x) =

√
2

k + 1
xψk(x)−

√
k

k + 1
ψk−1(x)

and initializing with “ψ−1(x)′′ = 0. The recursion relation can be obtained
from the differential and recursion relations for the Hermite polynomials
(next problem set, Problem #4). The results are shown as the broad grey
curves in Fig. 1.

2. Harmonic Oscillator 2: Solve the equation −1
2
d2ψ
dx2

+ 1
2
x2ψ = Eψ

(obtained by setting m = k = h̄ = 1 in the Schrödinger equation) numerically
by discretizing along the line using a step size ∆ and extending the part of
the line that is discretized from −a to +a. Play around with the parameters
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Figure 1: The ground state harmonic oscillator wavefunction ψ0(x) and first
five excited states ψi(x) are plotted. The analytically computed functions
are shown by thick grey curves and the numerically computed wavefunctions
are shown (superposed) by thin black curves.

2



∆ and a until you find reasonable values. Describe your frustration as you
iterate to ‘reasonable values’. What values are you using? Then plot the
ground state (no zero crossings) and the five lowest excited states and brag
that you’ve done an analytically solvable problem numerically.

Solution: The interval [−5,+5] was discretized with step size dx = 0.01,
requiring 10/0.01 + 1 = 1001 points. The x values and indices i = 1 · · · 1001
are related x = (i− 501)/100.0. A tridiagonal matrix was created with 1

2
2
dx2

along the diagonal and −1
2

1
dx2

along the sub/super diagonals. In addition,
1
2
x2 was added along the diagonal. The diagonal was presented in a 1001

length column vector d and the off-diagonals presented in an array e (Nu-
mercial Recipes notation) and these arrays loaded into subroutines tqli and
eigsrt from same. The eigenvectors with the lowest six eigenvalues are plotted
in Fig. 1 using the narrow black lines. Postprocessing of the numerical eigen-
vectors was done by multiplying by σ(i)/

√
dx, where σ(i) is the sign of the

750th component of the ith eigenvector (phase adjustment) and multiplying
by a normalization coefficient (Problem 3). The lowest eigenvalues for this
choice of parameters is: 0.499997, 1.499984, 2.499960, 3.499923, 4.499884.

3. Normalization Problem: If you look at the vertical scales on the
plots of Problems 1 and 2, they are different. How do you reconcile this
difference. Be quantitative.

Solution: The analytic and numerical eigenfunctions are scaled differ-
ently, so set Nψnum(x) = ψ(x)anal, where N is some normalization coefficient.
Analytic and numerical integrations are done on the left and right:∫ +∞

−∞
|ψanal(x)|2 = 1

∑
i

|Nψnum(i)|2∆ = 1

Every sensible matrix eigenvalue routine outputs eigenvectors normalized to
1: ∑

i

|Nψnum(i)|2∆ = N2∆
∑
i

|ψnum(i)|2 = N2∆ = 1

As a result N = 1/
√

∆.

4. Plot |ψ10(x)|2 and compare with the plot by Dicke and Wittke in the
handout.

Solution: The analytic computation of Problem 1 was extended to
ψ10(x) and its square was plotted (Fig. 2).
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Figure 2: |ψ10(x)|2, where the wavefunction is constructed analytically.
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5. Diatomic Molecules: Schrödinger derives an approximation to the
spectrum of a diatomic molecule:

Ei '
l(l + 1)h̄2

2I0

(
1− ε

1 + 3ε

)
+ (n+

1

2
)h̄ω0

√
1 + 3ε ε =

l(l + 1)h̄2

(I0ω0)2

This occurs as Eq. (51) in his second paper. I have made the following
modifications in his equations. (1) Interchanged n ↔ l, where n is now the
harmonic oscillator quantum number and l is the orbital angular momentum
quantum number, (2) h→ h̄, ν0 → ω0, (3) µr20 = A→ I0.

Carry out a Taylor series expansion of this energy expression in powers of
ε (!! Please use Maple or other !!) and express the result in powers of (n+ 1

2
)

and l(l + 1):

Ei '
∑
p,q

Dp,q(n+
1

2
)p [l(l + 1)]q

Solution: All the terms arising from the left hand term in the energy
expression have p = 1 while those from the right hand term have p = 1. We
carry out a Taylor series in ε on the left and right hand terms separately:

q p = 0 p = 1
0 (n+ 1

2
)h̄ω0

1 1
2
I0ω

2 3
2
(n+ 1

2
)h̄ω0

2 −1
2
I0ω

2 −9
8
(n+ 1

2
)h̄ω0

3 31
2
I0ω

2 27
16

(n+ 1
2
)h̄ω0

4 −91
2
I0ω

2 −405
128

(n+ 1
2
)h̄ω0

5 271
2
I0ω

2 1701
256

(n+ 1
2
)h̄ω0

Beware of Numerical Computations
Whenever you do a numerical computation you should turn yourself

inside-out to feel comfortable that your results are believable. In the context
of the current set of computations, this includes looking at the energies and
eigenfunctions that are analytically available. The lower energies are just
fine. A plot of energies up to n = 50 is given in Fig. 3. This shows there
is a problem starting about n = 10. Another thing to do is look at the
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Figure 3: Energies of the lowest fifty eigenstates of the harmonic oscillator,
computed analytically (red) and numerically (black).

wavefunctions to see if they vanish approachiing the boundaries of the finite
interval that was discretized. Starting at n = 10 you can see the beginnings
of this problem: the values ψ(±5) start to pull away from zero.

A global picture of the disparity between the analytic and numerical
values of the energy is shown in Fig. 4. Here there is a big disparity! Nu-
merically, this is forced by the problem that the trace of the analytically
constructed hamiltonian is

∑
(i + 1/2) ' 0.5 × 106 while the trace of the

numerically constructed matrix KE + PE is larger by about two orders of
magnitude.
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Figure 4: Energies of all the eigenstates of the harmonic oscillator, computed
analytically (red) and numerically (black).
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