QUANTUM MECHANICS 1

PHYS 516

Solutions to Problem Set # 1

1. Scaling: Bohr computed the energy level spectrum of the hydrogen
atom using the Old Quantum Theory, Heisenberg did the same using Matrix
Mechanics, and so did Schrédinger using Wave Mechanics. They all derived

_ By
= N
Here N = 1,2,3,... is the principal quantum number, —e is the charge on
the electron, m is the mass of the electron (actually electron-proton reduced
mass), a = €?/hc = 1/137.036... is the fine structure constant, and ap is the
Bohr radius. F; = —13.6eV and ap = 0.529 x 10~%cm.

For each of these pairs compute the binding energy and the size (diame-

1
En E, = —577102042/N2 Ry = Nag ap =h*/me* (1)

ter):
System Energy Size
hydrogen atom: pTe™ (nonrelativistic) 13.6 eV | 1.058 A(diam.)
He'®:

mu-mesic atom: ptpu”
pi-mesic atom: pTr~
positronium: ete™
muonium: gt p”
pionium: 7w~
Muonic atom: Pb¥* i~
Si exciton: € = 11.9,m, = 0.8m, my = 0.4m
GaAs exciton: € = 12.5,m, = 0.07m, m;, = 0.4m
El' is neutral Element, and EI"*! is Element without n of its electrons.
For excitons the electron (m.) and hole (m;) effective masses are given as
multiples of the free electron mass. Recall that the mass m used in expres-
sions for the hydrogen atom properties is the proton-electron reduced mass.

Solution: A computer code was written. A 10 x 8 array was created.
Each row is dedicated to one of the 10 atomic pairs listed.

1



Inputs:

Col. 1: my
Col. 2: my

Col. 3: Z/e. This is the electromagnetic scale factor.
Outputs:

Col. 4: u = mymy/(my + my) - This is the mass scaling factor.
Col. 5: 1/(u* Z/e) - This is the length scale factor

Col. 6: p* (Z/€)? - This is the energy scale factor.

Col. 7: 1/(u* Z/e) *x ap - Radius of bound state.

Col. 8: u*(Z/e)?* Ep - Energy of bound state.

Note that the size of the Pb®***u~ does not appear because of the for-
matting. It is 0.0000311 x 10~® c¢m or 3.11 x 107 m. The proton radius is
about 0.86 x 107*m but the lead nucleus has a radius of (208)Y/° x R, ~
5.09 x 10~1%m, by scaling arguments. This means that the mu meson spends
more of its time inside the lead nucleus that outside. It therefore can be used
as a sensitive probe of the nuclear structure of the lead nucleus.
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2. Relativistic Schrodinger Equation: Schrodinger solved the rela-
tivistic problem before he proposed his nonrelativistic equation. You will do
that here

a. Write down the relativistic equation for a spinless electron in the
presence of a spinless proton.

b. Use separation of variables to “get rid of” the angular dependence.

c. Use the useful transformation R(r) = L f(r) and write down the radial
equation in terms of the unknown function f(r).

d. Compare this equation with an equation in Table 22.6 from Abramowitz
and Stegen. What do you conclude?

e. Show

m02

E(n,l,a)=

- (2)
1+ p;
<n+§+ (l+§)2—a2)

f. What effect does relativity have on the “Bohr radius” of an electron?

g. Expand the expression for the energy of a relativistic electron without
spin in powers of the fine structure constant o up to and including order
six. Compare the first correction to the rest energy with the nonrelativistic
spectrum.

Solution:
a. {(E+ <)+ (he)*V? = (mc®)?} ¢ = 0
b. c. Make the substitution ¥ (r,0, ¢) = 1 R(r)Y}. (6, $) and obtain

B~ (m) 2B (d) W+ (@) |,
{ ho)? +(hc>2r+<dr> p +(hc)2T2}R() 0

d. Scale the radial coordinate r = vz and obtain

{Ez—(mc2)2 72+2Ee2 -I—(Cl) —l<l+1)_&2}R(Z):O

(hc)? (hc)?z 7 dz 22

e. Compare with 22.6.17 in Abramowitz and Stegun:
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E? = (m&)? 1
(o2 ) 4
2F¢e? 2n+ 6 +1
(ho)z 2

1 _

—I(l+1)+a? 4B

Here o = €2 /Iic is the fine structure constant and /3 is a parameter associated
with the associated Laguerre polynomials L{?(z).

We attack the last equation first: —I(l + 1) + a? = 1;’82, which unwinds

to 5/2 = /(I + %)2 — 2. This is placed into the right hand side of the
middle equation, giving n + 5 + /({4 3)> — a?> = N(a). Ifa =0, N(0) =
n+3+({+3%) =n+1+1=N, where N is Bohr’s Principal Quantum
Number. So

1 1 o? ot 208
N(a)=N=/(l+ )2 —-a?—(I+2) =— - - -
(@) Ut ey =~ @ir 1 @iy
For the ground state with N = 1 (Princial quantum number), n = 0 (radial
quantum number) and [ = 0 (angular quantum number), so 1(a) =1 —a? —
a* —2a8--.. We continue by taking the ratio of the first equation to the
square of the second (to rid ourselves of the scale factor v):

E? — (mc*)? 1
(2Ea)2 ~  4N(a)?

E? _ (m02)2 o o
E? N(«)?

One last piece of algebra gives the result

E 1

met i ()

e. Now go back and find the scale factor v, which determines the size of
the Bohr radius.




2(56)627: N(a) =~ = CLQBN(a)$1+ <N((ya)>

In the ground state we use 1(«) as given above to find

© 1 5, 21
2 M i p(l——a?— 2ot — Zaf—..)

— 02 — o —906)2
aB—>aB\/(1 a? —at —2a8)2 +a 5 3 16

The Bohr orbit radius decreases. The decrease may be interpreted as a
relativistic contraction in the transverse direction due to its speed v ~ ac.

Finally, we expand the expression for the energy in ascending powers of
a using Maple(!) or some other sanity-preserving software:

2N +3(20+1)

E ~ mc? l—ia2+ S ! ot 4+l | — > + ;
N 2N? 8N+ N3(20+1) 16N6 ~ 5N5(20+1)

IN*(20 + 1)

)



