QUANTUM MECHANICS I

PHYS 516

Solutions to Problem Set # 1

1. Scaling: For hydrogen

$$E_g = -\frac{1}{2}mc^2\alpha^2 \qquad a_B = \hbar^2/me^2 \tag{1}$$

To compute the ground state energies for the bound systems in this problem replace the electron-proton reduced mass by the appropriate reduced mass. It is simpler to compute the ratio of the appropriate reduced mass to that of the p^+e^- reduced mass, and simply multiply 13.6 by this ratio. For the two excitons remember to divide by ϵ^2 . For the size estimate you have to *divide* by the appropriate mass ratio. In the case of the excitons you must also multiply by ϵ .

Particle	1	A + B	A + B	
Mass MeV/c^2		luced M	Reduced M	
e^{\pm} 0.511	P^+e^-	- 0.5107	$\mu^+\mu$	-105.7/2
μ^{\pm} 105.7	$P^+\mu$	- 94.997	$\pi^+\pi$	-139.6/2
π^{\pm} 139.6	$P^+\pi$	-121.51	Si exc.	0.511 * 0.2666
p^+ 938.2	e^+e^-	0.511/2	Ga exc.	0.511 * 0.0595
		<i>.</i>	1	
Syste	em E	lanergy (eV)	Size	e (A)
p^+e^-		13.6	1.058 Å	$\dot{A}(diam.)$
$\mathrm{He}^{\mathrm{II}}$:		54.4	0.	529
$p^+\mu^-$		2529.6	0.00539	
$p^+\pi^-$		3234.1	0.004449	
e^+e^-		6.8	2.116	
$\mu^+\mu^-$		1406.5	0.0102	
$\pi^+\pi^-$		1857.6	0.007458	
Si exc.:		0.02560	47.213	
GaAs exc:		0.00518	221.99	

2.& 3. Polarization: The plots below show the amplitudes A(n) and the intensities $I(n) = |A(n)|^2$ for a series of equally rotated polaroid filters, each through an angle $(\pi/2)/n$, when the transmission probability (in intensity) is T. Light = amplitudes; Dark = intensities, for T = 100%, T = 90%.

Figure 1: Light: transmission amplitude for 100% and 90% transmission per polaroid filter. Dark: transmission probability for the two cases.