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We present a simple way to construct the dispersion relations for lattice vibrations in two- and

three- dimensional harmonic lattices.

A simple harmonic chain is often used to illustrate lat-
tice vibrations in a solid. The chain consists of n parti-
cles, each of mass m, connected to nearest neighbors on
the left and right by identical springs with spring con-
stant K. The two particles at each end of the chain:
(a) may be connected by springs to immoveable anchors
(brick wall boundary conditions); (b) may not be at-
tached to anything (free boundary conditions); or (c)
may be attached to each other by a spring (periodic
boundary conditions). In the latter two cases the low-
est vibration frequency is w = 0 while in case (a) the
lowest frequency is nonzero. For large n the spectrum of
eigenfrequencies is otherwise essentially the same in the
three cases.

For convenience we adopt periodic boundary condi-
tions [1] and label the particles according to their po-
sition in the chain from 5 = 0 to j = n — 1, with the nth
position identified with the Oth position. The Lagrangian
for this chain is £ = KE — PE, with KF = Z;L:_Ol %mx?
and PE = Z;L:_Ol $k(zj41 — x;)% All indices are taken
mod(n). The Euler Lagrange equations of motion lead
to an n X n cyclic matrix, an example of which is
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where, for the case at hand a = 2K — mw? and b =d =
-K.

Cyclic matrices C have very convenient properties [2].
They are invariant under the permutation operation
P whose only nonzero matrix elements are Pji1; =
Pyn-1 = 1, so that PCP~!' = C. Since P" = I,
the eigenvalues of P are e where § = 27mm/n, m =
0,1,2,--- ,n— 1. The eigenvectors of a cyclic matrix are
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that the motion of mass i+ 1 is phase-shifted by e? from
the motion of mass i. The eigenvalues have the form
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a+be?? +ce? + ... 4 de”?

E
Xy Gyl 9" )

For the case at hand

mw? = 2K — Ke' — Ke " = 2K (1 — cosf).  (3)

If both nearest neighbor (K) and next nearest neighbor
(k) interactions are present,

mw? = 2K (1 — cos 0) + 2k(1 — cos 26) (4)

Longer range harmonic interactions are treated similarly.

If there are two atoms per unit cell, then the index 4
labels unit cells. If masses m and M in unit cell ¢ are
connected by a spring with spring constant K and M in
cell 7 is connected to m in cell ¢ + 1 by a spring with
spring constant k, then the Euler Lagrange equations for
the two atoms in unit cell ¢ are
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The matrix elements a, b, ¢, - - - in Eq. (1) are replaced by

2 x 2 matrices A, B,C,--- and the ’eigenvalue’ becomes

—K — ke "
K +k— Mw?
(6)
This matrix must be diagonalized to determine the two
oscillation frequencies and their corresponding eigenvec-
tors. The two oscillation frequencies occur on the acous-
tic branch (lower frequency solution) and the optical
branch. Now unit cell i + 1 is phase-shifted by e*’ from
the motion of unit cell . The motion of atoms within
each unit cell are defined by the two eigenvectors of the
matrix in Eq. (6), which are #-dependent.

In two dimensions the equilibrium positions of atoms
are identified by two integer indices (j1,j2). We assume
periodicity in both dimensions, so that 0 < j; < n; where
71 = nq is identified with j; = 0, and similarly for 0 <
j2 < mo. Figure 1 shows small sections of periodic square
and hexagonal lattices. For such lattices with n; X ng
equal mass particles the Lagrangian can be set up in
the usual way and the Euler-Lagrange equations lead to
a potential energy matrix Kj, j,) (j1 j;)- This matrix is
invariant under cyclic permutation matrices P; that act
on the first symbols j1, j; and P, that act on the second
symbols ja, 7} separately:
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FIG. 1: (a) Part of a two-dimensional square lattice. The four
nearest neighbors to atom at site (7,;) are at (¢,j = 1) and
(i+1,7). The four next nearest neighbors are at (1+1,j+1).
(b) Part of a two-dimensional hexagonal close packed lattice.
In this labeling scheme the six nearest neighbors to (7, ) are
at (i£1,5),(i,5+£1),(i£1,5F1).

The components of the eigenvectors of Py @ P, have the
form 7101 17292 with 6, = 27my /ny and O = 2wmy /ns.
The eigenvalues of I are

E(m1,ma) =Y Ky jay,(ppe’ V1700 el02772%(8)
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For the square lattice shown in Fig. 1la with nearest
neighbor (K) and next nearest neighbor (k) coupling

mw? = 2K (1—cos 01 )+2K (1—cos ;) +4k(1—cos 0, cos 0)
(9)

For the hexagonal lattice shown in Fig. 1b with nearest
neighbor coupling K and indexing as shown, and cylcing
clockwise from the 3 o’clock position, we find

mwQ = 6K - K (6i01 + 62’02 + Ei(761+02)
te—i01 4 o—if +6i(01702))
= 6K — 2K (cos B + cos Oy + cos(fy — 05))
(10)
As usual, 01 = 27my/ny and 0y = 2wmg/ny. When
there are p atoms in a unit cell, a p X p matrix must be
constructed and diagonalized as described in Eq. (6).

Three dimensional periodic lattices can be treated sim-
ilarly. For a simple cubic lattice with NN (K) and NNN
(k) coupling

mw? = 2K (1 — cos ;) + 2K (1 — cosf3) + 2K (1 — cos 63)
+k i)+ (1 —cos(E0; £0;))

(11)
The three-dimensional HCP lattice is created by adjoin-
ing three above-plane sites (j1, 2,75+ 1), (1,72 — 1,J5 +
1), (41 — 1, j2,43 + 1) and the corresponding below-plane
sites (ji1,J2, 73 — 1), (J1,J2 + 1,53 — 1), (j1 + 1, j2, jz — 1).
If the in-plane spring constants remain K and the out-

of-plane spring constants are k, three additional terms
must be added to the right hand side of Eq. (10):

2k(1—cos03) 4 2k(1—cos(f5 —61)) +2k(1 — cos(03 — 02)).
(12)

We have shown how to compute phonon dispersion
spectra for one-, two-, and three-dimensional lattices
with periodic boundary conditions using the properties
of cyclic, bi-cyclic, and tri-cyclic matrices. The proce-
dure extends easily beyond nearest neighbor interactions
and to more than one atom per unit cell.
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