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We present a simple way to construct the dispersion relations for lattice vibrations in two- and
three- dimensional harmonic lattices.

A simple harmonic chain is often used to illustrate lat-
tice vibrations in a solid. The chain consists of n parti-
cles, each of mass m, connected to nearest neighbors on
the left and right by identical springs with spring con-
stant K. The two particles at each end of the chain:
(a) may be connected by springs to immoveable anchors
(brick wall boundary conditions); (b) may not be at-
tached to anything (free boundary conditions); or (c)
may be attached to each other by a spring (periodic
boundary conditions). In the latter two cases the low-
est vibration frequency is ω = 0 while in case (a) the
lowest frequency is nonzero. For large n the spectrum of
eigenfrequencies is otherwise essentially the same in the
three cases.

For convenience we adopt periodic boundary condi-
tions [1] and label the particles according to their po-
sition in the chain from j = 0 to j = n− 1, with the nth
position identified with the 0th position. The Lagrangian
for this chain is L = KE−PE, with KE =

∑n−1
j=0

1
2mẋ

2
j

and PE =
∑n−1
j=0

1
2k(xj+1 − xj)2. All indices are taken

mod(n). The Euler Lagrange equations of motion lead
to an n× n cyclic matrix, an example of which is


a b c · · · d
d a b c · · ·
...

...
...

. . .
...

b c · · · d a

 (1)

where, for the case at hand a = 2K −mω2 and b = d =
−K.

Cyclic matrices C have very convenient properties [2].
They are invariant under the permutation operation
P whose only nonzero matrix elements are Pi+1,i =
P0,n−1 = 1, so that PCP−1 = C. Since Pn = In
the eigenvalues of P are eiθ where θ = 2πm/n, m =
0, 1, 2, · · · , n− 1. The eigenvectors of a cyclic matrix are
1√
n

[
ei0θ, ei1θ, ei2θ, · · · , ei(n−1)θ

]t
. Physically, this means

that the motion of mass i+1 is phase-shifted by eiθ from
the motion of mass i. The eigenvalues have the form

E = a+ beiθ + cei2θ + · · ·+ de−iθ

=
∑
j′ Cj,j′ei(j

′−j)θ (2)

For the case at hand

mω2 = 2K −Keiθ −Ke−iθ = 2K(1− cos θ). (3)

If both nearest neighbor (K) and next nearest neighbor
(k) interactions are present,

mω2 = 2K(1− cos θ) + 2k(1− cos 2θ) (4)

Longer range harmonic interactions are treated similarly.
If there are two atoms per unit cell, then the index i

labels unit cells. If masses m and M in unit cell i are
connected by a spring with spring constant K and M in
cell i is connected to m in cell i + 1 by a spring with
spring constant k, then the Euler Lagrange equations for
the two atoms in unit cell i are

i− 1 i i+ 1

0 −k
0 0

K + k −mω2 −K
−K K + k −Mω2

0 0

−k 0

D A B

(5)

The matrix elements a, b, c, · · · in Eq. (1) are replaced by
2× 2 matrices A,B,C, · · · and the ’eigenvalue’ becomes

A+Beiθ +De−iθ →

[
K + k −mω2 −K − ke−iθ

−K − ke+iθ K + k −Mω2

]
(6)

This matrix must be diagonalized to determine the two
oscillation frequencies and their corresponding eigenvec-
tors. The two oscillation frequencies occur on the acous-
tic branch (lower frequency solution) and the optical
branch. Now unit cell i + 1 is phase-shifted by eiθ from
the motion of unit cell i. The motion of atoms within
each unit cell are defined by the two eigenvectors of the
matrix in Eq. (6), which are θ-dependent.

In two dimensions the equilibrium positions of atoms
are identified by two integer indices (j1, j2). We assume
periodicity in both dimensions, so that 0 ≤ j1 < n1 where
j1 = n1 is identified with j1 = 0, and similarly for 0 ≤
j2 < n2. Figure 1 shows small sections of periodic square
and hexagonal lattices. For such lattices with n1 × n2
equal mass particles the Lagrangian can be set up in
the usual way and the Euler-Lagrange equations lead to
a potential energy matrix K(j1,j2),(j′1,j

′
2)

. This matrix is
invariant under cyclic permutation matrices P1 that act
on the first symbols j1, j

′
1 and P2 that act on the second

symbols j2, j
′
2 separately:

K(j1,j2),(j′1,j
′
2)

P1−→ K(j1+1,j2),(j′1+1,j′2)

K(j1,j2),(j′1,j
′
2)

P2−→ K(j1,j2+1),(j′1,j
′
2+1)

(7)
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FIG. 1: (a) Part of a two-dimensional square lattice. The four
nearest neighbors to atom at site (i, j) are at (i, j ± 1) and
(i±1, j). The four next nearest neighbors are at (i±1, j±1).
(b) Part of a two-dimensional hexagonal close packed lattice.
In this labeling scheme the six nearest neighbors to (i, j) are
at (i± 1, j), (i, j ± 1), (i± 1, j ∓ 1).

The components of the eigenvectors of P1 ⊗ P2 have the
form eij1θ1 eij2θ2 , with θ1 = 2πm1/n1 and θ2 = 2πm2/n2.
The eigenvalues of K are

E(m1,m2) =
∑
j′1,j

′
2

K(j1,j2),(j′1,j
′
2)
ei(j

′
1−j1)θ1ei(j

′
2−j2)θ2 (8)

For the square lattice shown in Fig. 1a with nearest
neighbor (K) and next nearest neighbor (k) coupling

mω2 = 2K(1−cos θ1)+2K(1−cos θ2)+4k(1−cos θ1 cos θ2)
(9)

For the hexagonal lattice shown in Fig. 1b with nearest
neighbor coupling K and indexing as shown, and cylcing
clockwise from the 3 o’clock position, we find

mω2 = 6K −K
(
eiθ1 + eiθ2 + ei(−θ1+θ2)

+e−iθ1 + e−iθ2 + ei(θ1−θ2)
)

= 6K − 2K (cos θ1 + cos θ2 + cos(θ1 − θ2))
(10)

As usual, θ1 = 2πm1/n1 and θ2 = 2πm2/n2. When
there are p atoms in a unit cell, a p × p matrix must be
constructed and diagonalized as described in Eq. (6).

Three dimensional periodic lattices can be treated sim-
ilarly. For a simple cubic lattice with NN (K) and NNN
(k) coupling

mω2 = 2K(1− cos θ1) + 2K(1− cos θ2) + 2K(1− cos θ3)

+k
∑
i<j,±,± (1− cos(±θi ± θj))

(11)
The three-dimensional HCP lattice is created by adjoin-
ing three above-plane sites (j1, j2, j3 + 1), (j1, j2− 1, j3 +
1), (j1 − 1, j2, j3 + 1) and the corresponding below-plane
sites (j1, j2, j3 − 1), (j1, j2 + 1, j3 − 1), (j1 + 1, j2, j3 − 1).
If the in-plane spring constants remain K and the out-
of-plane spring constants are k, three additional terms
must be added to the right hand side of Eq. (10):

2k(1−cos θ3)+2k(1−cos(θ3−θ1))+2k(1−cos(θ3−θ2)).
(12)

We have shown how to compute phonon dispersion
spectra for one-, two-, and three-dimensional lattices
with periodic boundary conditions using the properties
of cyclic, bi-cyclic, and tri-cyclic matrices. The proce-
dure extends easily beyond nearest neighbor interactions
and to more than one atom per unit cell.

[1] J. M. Ziman, Electrons and Phonons, Oxford: University
Press, 1960.

[2] B. Kaufman, Crystal Statistics. II. Partition Function

Evaluated by Spinor Analysis, Physical Review 74(4),
1232-1243 (1949). See especially Eqs. (44) - (48).


