
Quantum Mechanics

1 Big Picture

Quantum Theory has evolved/is evolving in three waves. These are sketched
in Fig. 1.

Figure 1: The Quantum Theory has evolved and/or is evolving in three
waves. The time-lines for each are indicated.

Wave I: In 1913 Bohr introduced his planetary model of the hydrogen
atom. He computed an electron trajectory in a Coulomb potential and kept
only those trajectories that satisfied a certain externally imposed “quantiza-
tion condition.” This model quantitatively explained the properties of this
atom. Its success whetted the appetites of other physicists who had been
frustrated by their inability to explain the enormous body of data that had
built up over a century, since Spectroscopy evolved into a quantative obser-
vational science. Unfortunately, this model failed to explain any/every-thing
more complex.
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Wave IIa - Matrix Mechanics: In 1925 Heisenberg (Bohr’s pro-
tege) realized that tables of transition frequencies can be treated as ma-
trices. He formulated a quantum theory in terms of matrices. In this the-
ory these frequencies, or matrix elements, are the only observables. “If it
isn’t observed, it doesn’t exist.” Born, Heisenberg, and Jordan complete the
“DreiMännerArbeit” (“Three men’s work”) in which they create a formal
prescription (algorithm) that allows them to start from a Hamiltonian that
describes a classical atomic puzzle (planetary model of an atom) and convert
it to a Matrix Mechanics description of the same puzzle. This algorithm was
very difficult to apply, especially given the fact that no physicists knew how
to work with, or even knew about, matrices at that time. Only Pauli was
able to use this prescription to solve the hydrogen atom problem. His solu-
tion involved not only the obvious symmetry (rotation symmetry, or SO(3)
symmetry), but the even larger symmetry [SO(4), SO(3, 1)] presented by
the invariance of the Runge-Lenz vector. The “DreiMännerArbeit” served
as the template for Herbert Goldstein’s beautiful book Classical Mechanics,
Addison-Wesley, 1950. This book was written with an eye to tailoring the
foundations of Classical Mechanics for Quantum Mechanics courses.

Wave IIb - Wave Mechanics: In 1926 Schrödinger submitted his first
Wave Mechanics paper (QAEP-1). It was sent to the journal simultaneously
(and independently of) Pauli’s solution of the hydrogen atom problem using
Matrix Mechanics. In his paper Schrödinger formulated the hydrogen atom
problem as a partial differential equation. At the time partial differential
equations were far more familiar to physicists than matrices. In this paper he
solved the hydrogen atom for both the discrete and the continuous spectrum
using the (then) widely known and powerful techniques of complex variable
theory.

Six months later Schrödinger showed the equivalence of his Wave Mechan-
ics with the Matrix Mechanics of Born, Heisenberg, and Jordan. In the con-
test between partial differential equations and matrices, PDEs (Schrödinger)
trumped matrices (Heisenberg) hands down. To get back into the ring,
Heisenberg proposed the Uncertainty Principle in 1927.

In later years (after 1943) effective ways of solving PDEs by converting
them to matrix equations are supplementing/ have supplemented Wave Me-
chanics. And later yet, in 1949 Feynman proposed a third very intuitive way
of formulating Quantum Theory as a sum-over-all-paths theory.

The relations among these three ways of formulating Quantum Mechanics
is summarized in Fig. 2.
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Figure 2: Matrix Mechanics was created in 1925 by Heisenberg and Wave Me-
chanics was created in 1926 by Schrödinger. Shortly afterwards, Schrödinger
showed that the two formulations were equivalent, differing only by a choice
of basis. Feynman created the Path Integral formulation of Quantum Me-
chanics in 1949 and also showed the equivalence with Wave Mechanics in his
founding paper. Euclid filled in the dashed line.
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III - Schrödinger and Einstein Strike Back: In 1935 both Schrödinger
and Einstein vented their frustration with Quantum Theory. The EPR man-
ifesto proposed a gedankenexperiment to highlight the incompleteness of
quantum theory as then formulated. They introduced a concept that we
now call “entanglement” (Schrödinger’s term for it is ‘intrication’). This
paper encouraged Schrödinger to express his disenchantment with his own
child. He did so by proposing the “Cat Paradox”. This is now usually ad-
dressed under the name “decoherence”, while the EPR challenge is discussed
in terms of “Spooky Action at a Distance”.

The EPR challenge seemed to be a purely philosophical debate between
Einstein and Bohr until

a. In 1957 Bohm proposed a different way to formulate the experiment.

b. In 1964 Bell showed how Einstein and Bohr predicted different outcomes
for a class of experiments.

The result (so far): Before, only determinism could create correlations among
measurements. Now, there is a brand new resource, measurement, that can
create correlations. We (still) don’t fully understand how Nature works.

All these developments took place subject to the constraints of Thermo-
dynamics and its Big Brother, Statistical Mechanics. The principles of these
subjects, especially in the hands of Maxwell, Boltzmann, Wein, Planck, and
Einstein, placed severe constraints on the evolution of the Quantum Theory
of Radiation. They continue to do so, at least as of 1976 with the discovery
of Black Hole Thermodynamics and Hawking Radiation.

2 Elaboration

Wave I: Bohr’s “Old Quantum Theory” is a beautiful theory for historical
study. We won’t study it. It is not correct. In 1917 Einstein pointedly showed
that it couldn’t be correct. In a paper that was largely ignored (uncited for
50 years) he showed that the Bohr-Sommerfeld quantization condition on
trajectories could be written in the form∮

Ci

p · dq = nih (1)
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where the contour integral is taken around each of k independent loops of a k-
degree of freedom system. This works when the classical system is integrable
and trajectories live on a k-dimensional torus in a 2k-dimensional phase
space. The loops Ci form a basis for the homotopy group of the torus T k.
If the system is not integrable this quantization condition falls apart. This
fatal objection to the Old Quantum Theory did not kill it: It lasted until it
could be replaced by (first) Matrix Mechanics and (very shortly afterward)
by Wave Mechanics.

The Old Quantum Theory gave rise to several concepts that were radical
and fascinating at the time, but have grown old and useless, if not outright
wrong, at the present. Nevertheless, academic inertia is such that these (e.g,
Correspondence Principle) have failed to be relegated to oblivion.

Wave II: Schrödinger did two things in the first two pages of his first
paper on Wave Mecanics:

a. He introduced a variational formulation for a field ψ(x) (now called “wave
function”):

J =
∫ (

K(∇ψ(x))2 + V (x)(ψ(x))2
)
dV

δJ = 0 K =
h̄2

2m

(2)

He also pointed out that the action J is a quadratic form in both ψ and
∇ψ. The implications are profound (fast forward many years): This
variation equation can “easily” be solved using matrix methods.

b. He reduced the variational problem to a linear equation involving the
potential V (x) and the second derivative operator ∇2 using a stan-
dard integration by parts procedure and separately addressing bound-
ary conditions. Thus the Schrödinger equation is a consequence of the
variational formulation of Wave Mechanics:

−∇(K∇ψ) + V ψ = Eψ (3)

In this equation the energy, E, enters as a Lagrange multiplier and has
a physical interpretation as energy.

The remainder of his first paper on Wave Mechanics is devoted to solving
the hydrogen atom problem and wrestling with the interpretation of the new
field, ψ, that he introduced.
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3 Summary of Schrödinger’s Annus Mirabilis

of 1926

Schrödinger published six fundamental papers on Quantum Mechanics in
1926. They are collected in: Collected Papers on Quantum Mechanics -
Schrödinger, AMS Chelsea Publishing Co., Providence, RI, 2001, 2003. This
collection also contains three later papers and four of his lectures.

The six papers are summarized here.

Quantization as an Eigenvalue Problem I.
a. Variational formulation, quadratic form in ψ and ∇ψ
b. Differential equation form
c. Solution hydrogen atom
d. ? What have I wrought ?

Quantization as an Eigenvalue Problem II.
a. Wave optics — Wave mechanics analogy
b. Harmonic oscillator
c. Rigid rotors
d. Rotating oscillator as model for molecules
e. ? What have I wrought ?

The Continuous Transformation from Micro- to Macro-Mechanics
a. Quantum system closest to classical harmonic oscillator
b. Coherent states (now foundation of Quantum Optics)

On the Relation Between the Quantum Mechanics of Born, Heisenberg,
and Jordan and that of Schrödinger

a. Two two are equivalent
b. They differ by a change of basis

Quantization as an Eigenvalue Problem III.
a. Time independent perturbation theory introduced
b. Applied to describe the Stark effect

Quantization as an Eigenvalue Problem IV.
a. Time dependent Schrödinger Equation introduced
b. Time dependent perturbation theory introduced
c. Excited atoms, discrete and continuous spectra
d. Resonances
e. Magnetic and relativistic generalizations
f. ? What have I wrought ?
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4 Bell and the Third Wave

Bohr and Einstein carried out an argument about Quantum Mechanics that
was unresolved at their deaths. In essence, Einstein argued that the ulti-
mately measured properties of a physical system were written into the wave
at the time of its creation. Bohr argued that they were created only at the
time of the measuremewnt of the wavefunction. The rest of the Physics com-
munity regarded their argument as akin to the medieval argument about how
many angels could dance on the head of a pin.

With the greatest of apologies to Bohr and Einstein, their argument on
the foundations of Quantum Mechanics is summarized in Fig. 3. In this
figure a measurement is carried out at spacetime point A. The question is:
Are measurements at spacetime points B, C, D correlated with those at A?
Everybody agrees that measurements at A and B can be correlated, since B
can be connected to A by a time-like signal. Same for A and C. Everybody
also agrees that measurements at B and C can also be correlated, even if
these two points are space-like separated, if both are in the lightcone of A,
as both can be influenced by events at A.

Einstein argues that events at A cannot influence measurements at D
when A and D are spacelike separated. Bohr argues that measurements at
A and D can be correlated provided that the two have interacted sometime
in the past and they are in an “entangled” state.

Experiments have been done. At present, they show that Bohr is correct
and Einstein is not. This raises philosophical issues. These resutls show
us that we do not “understand” the working of Nature. These results also
open a brand new resource for Physicists. This resource allows correlations
among events in nature to be created in a third way: Not only by direct
causality (B and A in Fig. 3) and indirect causality (B and C in Fig. 3),
but also through “entanglement”. This resource is currently being exploited
in securing communications.
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Figure 3: Everybody agrees: Measurements at B can be correlated with
those at A because B is in the light cone of A. That is, events at B can
be “caused” (are causally related) by events at A. Same for C and A. In
addition, events at B and C can be correlated, even if they are space-like
separated. This is because both can be influenced by events at A, since both
are in the light-cone of A. Here agreement ends. Einstein contends that
there can be no correlations between events at A and D, who are space-
like separated (unless both are in the light cone of some previous causal
influence). Bohr contends that measurements at A can “force” correlations
with measurements at D. Experiments have been done. They show that
Quantum Mechanics provides a new resource that has hardly begun to be
understood.
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5 Schrödinger’s First Paper

Schrödinger’s initial formulation of Wave Mechanics was through the follow-
ing variational principle:

J =
∫

(K(∇ψ)2 + V (x)ψ2) dV

δJ = 0 and
∫
ψ2 d3x = 1

(4)

The normalization condition
∫
ψ2dV = 1 is enforced to avoid the uninter-

esting trivial solution ψ(x) = 0. For dimensional reasons [KL−2] = [V ] =
ML2T−2 ⇒ [K] = (ML2T−1)2/M . This means that K is h2/m, up to a
proportionality factor. He determined this proportionality factor by solving
this equation for the hydrogen atom and comparing the predicted spectrum
with the observed spectra. He found K = h̄2/2m. At this time he did not
seem to be aware that the wave function could be complex.

His next step was to convert this equation from an expression quadratic in
gradients to linear in second derivative operators. The standard way for doing
this was used. The function ψ was modified: ψ(x) → ψ̃(x) = ψ(x) + εφ(x)
and this modified expression was used in the variational expression. This
produced a function, J(ε), quadratic in the perturbation parameter ε. It was
also quadratic in φ and ∇φ. The standard procedure involves computing
dJ(ε)/dε) and setting this derivative equal to zero in an attempt to find
stationary solutions for J :

dJ(ε)

dε
|ε=0 = 2

∫
K∇φ · ∇ψ + φ(V (x)− E)ψ d3x (5)

The normalization condition of Eq. (4) is enforced by introducing a Lagrange
multiplier, called E here in view of its subsequent interpretation as an energy.

In order to convert the dependence on ∇φ in the first term to a depen-
dence on φ the first term is integrated by parts:∫

K∇φ · ∇ψ d3x =
∫
∇ (Kφ∇ψ) d3x−

∫
φ (∇(K∇ψ)) d3x (6)

The first term on the right leads to a surface integral and the second can be
combined with the remaining terms linear in φ in Eq. (5), which becomes

dJ(ε)

dε
|ε=0 = 2K

∮
φ∇ψ·dS + 2

∫
φ (−∇K∇ψ + (V (x)− E)ψ) d3x = 0 (7)
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This expression is required to vanish for an arbitrary test function φ(x). To
this end the surface integral (on the left) and the volume integral (on the
right) must separately vanish. We assume the integral extends over all space.
We force the surface integral to vanish by requiring φ∇ψ goes to zero faster
than 1/r2 as r → ∞. As for the volume integral, if we set φ equal to the
rest of the expression in that integral (i.e., φ = −∇K∇ψ+(V (x)−E)ψ), we
find that the volume integral of a perfect square over all space must vanish.
That is (

−K∇2 + V (x)
)
ψ = Eψ (8)

This is the Schrödinger equation with K = h̄2/2m:(
−(h̄∇)2

2m
+ V (x)

)
ψ = Eψ (9)

This expression looks suspiciously like the classical Hamiltonian for a particle
of mass m:

H =
p2

2m
+ V (x) (10)

As a consequence, through this correspondence it is possible to create a
beautiful algorithm for the transition from classical to quantum mechanics:

1. Write down the Hamiltonian for the classical system, expressed in terms
of the coordinates qi and canonically conjugate momenta pj.

2. Replace pj → h̄
i
∂
∂qj

.

3. Let this operator act on functions ψ(q) that are defined on the config-
uration part (q) of the total phase space (q, p).

4. Solve the eigenvalue equation.

The formal statement representing the step from Classical Mechanics to
Quantum Mechanics involves defining the commutator in Quantum Mechan-
ics in terms of the Poisson Bracket of Classical Mechanics:

[A,B] = ih̄ {A,B} (11)

The classical Poisson bracket is defined by {A,B} =
∑n
j=1

∂A
∂qj

∂B
∂pj
− ∂A

∂pj

∂B
∂qj

.
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We will solve the hydrogen atom problem in two ways. First by the
variational principle, Eq. (4), and then by the Schrödinger equation Eq. (9).

For a spherically symmetric potential, e.g., V (x) = −e2/|x|, where e is
the charge on the central proton and −e is the charge on the electron, we
can assume that the wavefunction separates in the usual way

ψ(x)→ ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) (12)

The pieces of this product obey the following normalization conditions

∫ ∫
(Θ(θ)Φ(φ))∗ (Θ(θ)Φ(φ)) sin θdθdφ = 1

∫ ∞
0

R2(r)r2dr = 1 (13)

The gradient is

∇ψ −→ r̂
dR

dr
Θ(θ)Φ(φ) +

θ̂

r
R(r)

dΘ

dθ
Φ(φ) +

φ̂

r sin θ
R(r)Θ(θ)

dΦ

dφ
(14)

and the inner product of the gradient with itself reduces to

∇ψ · ∇ψ →
(
dR

dr

)2

Θ2Φ2 +R2

(
1

r

dΘ

dθ

)2

Φ2 +R2Θ2

(
1

r sin θ

dΦ

dφ

)2

(15)

Some simplifications are possible. First, the function Φ(φ) must be sin-
gle valued: Φ(φ + 2π) = Φ(φ). The only possible solutions have the form
cosmφ, sinmφ or e±imφ. Using the real functions the last term in Eq. (15)
becomes proportional to (mRΘΦ)2. A similar but more difficult argument,
which is postponed until later, shows that the function Θ(θ) must also be
single valued, and that the two terms together consolidate themselves to
R2 l(l+1)

r2
Θ2Φ2. When the θ, φ dependence is integrated out, what is left is

Jrad =
∫ ∞

0
K

(dR
dr

)2

+
l(l + 1)

r2
R2

+ V (r)R2 − ER2 r2dr (16)

In general, there are only a few radial potentials V (r) that can be solved
analytically. We (Schrödinger) is lucky that the Coulomb potential V (r) =
−e2/r is one of them. In more general cases another approach must be taken
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to construct radial solutions and spectra. We will hint at these methods after
this equation is solved.

The variational problem is a quadratic form in both the unknown function
R(r) and its first derivative dR/dr. We assume that R(r) is a known solution
and look at how a perturbation affects it: R(r)→ R(r) + εg(r). This ansatz
is substituted into Eq. (16), the derivative with respect to ε is taken, and
the result is set to zero. This is done since we assume that R(r) (set ε = 0)
is an actual solution:

dJ(ε)

dε
|ε=0 = 2

∫
K

((
dR

dr

dg(r)

dr

)
+
l(l + 1)

r2
R(r)g(r)

)
+

V (r)R(r)g(r)− λR(r)g(r) r2dr = 0

(17)

It is essential that this holds for any value of the function g(r). In order to
replace dg/dr by g(r) an integration by parts is carried out:

∫ dR

dr

dg(r)

dr
r2dr =

∫ d

dr

(
g(r)

dR

dr
r2

)
− g(r)

d

dr

(
dR

dr
r2

)
dr =

(
g(r)

dR

dr
r2

)∞
0

−
∫ ∞

0

1

r2

d

dr

(
dR

dr
r2

)
r2dr

(18)

The surface term must vanish at r = 0 and as r → ∞. The remaining
integral is combined with the terms containing the potential energy and the
energy to give

∫ ∞
0

g(r)

(
− h̄2

2m

1

r2

d

dr

(
dR

dr
r2

)
+
h̄2

2m

l(l + 1)

r2
+ (V (r)− E)R(r)

)
= 0 (19)

Since g(r) is arbitrary, the expression within the brackets must vanish. This
gives the radial equation

− h̄2

2m

1

r2

d

dr

(
dR

dr
r2

)
+
h̄2

2m

l(l + 1)

r2
+ (V (r)− E)R(r) = 0 (20)

To proceed we multiply through by −2m/h̄2
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1

r2

d

dr

(
r2dR

dr

)
− l(l + 1)

r2
+

2me2

h̄2

1

r
R(r) +

2mE

h̄2 R(r) = 0 (21)

It is convenient to use the identity

1

r2

d

dr

(
r2dR

dr

)
=

(
1

r

d

dr
r

)2

R(r) =
1

r

(
d

dr

)2

rR(r) (22)

This identity cries out for the simplification R(r) = 1
r
f(r). The radial equa-

tion correspondingly simplifies to

d2f(r)

dr2
+

(
− l(l + 1)

r2
+

2me2

h̄2

1

r
+

2mE

h̄2

)
f(r) = 0 (23)

At this point we could be tempted to look up the solution. We expect
solutions to all reasonable second order ODEs to be tabulated for many
years. There is a slight problem. This equation carries dimensions (r is
a distance) and it is reasonable to tabulate only dimensionless equations.
Accordingly, we introduce a dimensionless parameter z and a scale factor γ
whose dimensions are L and substitute r = γz into the equation above. After
a slight amount of housecleaning we find

d2f(z)

dz2
+

(
− l(l + 1)

z2
+
γ 2me2

h̄2

1

z
+
γ2 2mE

h̄2

)
f(z) = 0 (24)

We then search through a convenient tabulation of second order differential
equations, as occurs in Abramowitz and Stegen, Handbook of Mathematical
Functions, and we find in Table 22.6.17 on p. 781 (Google: Abramowitz
and Stegun, click on ‘Electronic page index’, go to 781 22.6 Differential
Equations, and viola!)

d2y(x)

dx2
+

(
1− α2

4x2
+

2n+ α + 1

2x
− 1

4

)
y(x) = 0 (25)

The solution of this equation is y(x) = e−x/2xα+ 1
2Lαn(x) where the strange

functions Lαn(x) are associated Laguerre polynomials.
It is now time to compare the physical parameters with the mathematical:
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Physics Mathematics ⇒

−l(l + 1)
1

4
− (

α

2
)2 α = 2l + 1

γ · 2me2

h̄2 n+
α + 1

2
γ =

h̄2

2me2
(n+ l + 1)

γ2 · 2mE
h̄2 −1

4
−me

4

2h̄2

1

(n+ l + 1)2

(26)

The wave function is constructed from these pieces as

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ) =
1

r
f(r)Y l

m(θ, φ) =
1

x
e−x/2xl+1L(2l+1)

n (x)Y l
m(θ, φ)

(27)
where x = r/γ and γ = 1

2
NaB, where the principle quantum number N is

related to the orbital angular momentum quantum number l and the radial
quantum number n by N = n+ l+ 1 and aB is the expression for the radius
of the hydrogen atom in its ground state: aB = h̄2/me2 (Bohr radius or Bohr
orbit).

The spectrum of the hydrogen atom is shown in Fig. 4. The ground
state has energy −13.59 eV . The negative sign indicates that the state is
bound. All other discrete states shown in this figure are also bound. The
states are organized in terms of their energy or principal quantum number N ,
plotted vertically, and their orbital angular momentum quantum number l,
plotted horizontally. There are 2l+ 1 states with orbital angular momentum
quantum number l. The total number of states with principal quantum
number N is N2. The radial quantum number is n = N − l − 1, which
decreases from n = N − 1 to n = 0 along a row of states with the same
N . The energy decreases like E1/N

2 with increasing N . N = 1, 2, · · ·∞,
l = 0, 1, 2, · · · , N − 1, n = 0, 1, 2, · · · , N − 1 and N = n+ l + 1.

The radial wavefunctions are presented in Figs. 5 where they are pre-
sented as a function of r (units of [r] = L), and in Fig. 6, where they are
presented in atomic units (AU).

The radial wavefunctions are plotted in Fig. 7 as a function of r/aB: these
are Atomic Units. These are probability amplitudes. The corresponding
probabilities, which are the squares of these wavefunctions, are shown in Fig.
8.

Some of the more useful intgrals of the radial wavefunctions are collected
in Fig. 9.
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Figure 4: Spectrum of the hydrogen atom. This is obtained by solving the
Schrödinger nonrelativistic wave equation. The degeneracy of the level with
angular quantum number l is 2l + 1. All N2 energy levels with the same
prncipal quantum number N have the same energy. The radial quantum
number n decreases from n = N − 1 for the l = 0 states (left of each row)
to n = 0 at the right end of the row. This quantum number identifies the
number of zero crossings of the radial wavefunction. From Dicke and Wittke,
Fig. 10-7.
.

15



Figure 5: Radial wavefunctions for the hydrogen atom. These are obtained
by solving the Schrödinger equation. They are normalized to one. From
Dicke and Wittke, Tab 10-1.
.
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Figure 6: Radial wavefunctions of the hydrogen atom, expressed in terms of
atomic units. From Condon and Shortley, Table 15.
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Figure 7: Radial wavefunctions for the hydrogen atom, plotted as a function
of r/aB, where aB is the Bohr radius. These are obtained by solving the
Schrödinger equation. They are normalized to one. From Dicke and Wittke,
Fig. 10-6.
.
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Figure 8: Squares of the radial wavefunctions for the hydrogen atom. These
present the probability distributions, rather than the amplitudes, of the radial
wavefunctions. From Condon and Shortley, fig. 15.
.
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Figure 9: Some useful diagonal matrix elements of the radial wavefunctions.
From Condon and Shortley, Table 25.
.
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Copenhagen Interpretation of Quantum Mechanics

Formulated after Bohm (1952)

1. Every Quantum system Q is described by a state vector |ψ〉 in some
Hilbert space.

2. This state contains all the information that can ever be known about Q.

3. The state vector evolves dynamically according to Schrödinger’s equation.

4. In order to extract information about Q, an interaction must take place
between Q and a measuring apparatus A.

5. The measuring apparatus is a classical object and gives classical results.

6. It is outside the scope of analysis.

7. The entire system A+Q interacts to produce a measurement of Q.

8. Replacing A by a different apparatus A′ changes the entire system A+Q
to a different system A′+Q, and the results of the measurements need
not be similar.

9. Only quantitites that have been measured can be considered real.

10. The only values of an observable that can be observed in a measurement
are eigenvalues an of the observable, which is a hermitian operator on
the Hilbert space.

11. The probability of observing eigenvalue an when the experiment is car-
ried out is |〈φn|ψ〉|2, where |φn〉 is an eigenvector of A with eigenvalue
an.

12. Immediately after the measurement the state of Q is |φn〉 if the mea-
surement is an.
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Remarks:

2. This philosophical point is not universally shared.

4. “Measuring apparatus” remains undefined.

5. It is claimed that von Neumann formulated things so the measuring appa-
ratus could also be quantum mechanical. In view of his failures (Bohm’s
hidden variables theory is a counterexample to his “proof” that hidden
variables theories are impossible; the laser is a counterexample to his
and Bohr’s adamant claims that masers/lasers violate the uncertainty
relations and are therefore impossible), I cannot give credance to this
claim.

6. This is a cop out.

8. Complementarity!

9. Einstein, Schrödinger have difficulty with this.

11. Born’s probabilistic interpretation.

12. Collapse of the wavefunction. There is no theory for this.

Some Questions:

1. What is the origin and meaning of the uncertainty relations? Or more
generally of the noncommutativity of observables?

2. Where is the boundary in A+Q?

3. How does the apparatus force the “collapse of the wavefunction” |ψ〉 →
|φn〉 during a measurement?
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“Newtonian Formulation” of Copenhagen Interpretation

Definition of Coordinate System: The playing field on which Quantum
Mechanics takes place is a Hilbert space. A quantum system Q is
represented by a state vector |ψ〉 in this Hilbert space, or more generally
by a density operator ρ on this space. Observables are represented by
hermitian operators acting on this space.

Dynamics: The state |ψ〉 or ρ representing a quantum system evolves under
the Schrödinger equation.

Action and Reaction — Measurement: The quantum systemQ and the
apparatus A measuring the value of an observable interact with each
other during a measurement. Q acts on A to produce an eigenvalue
an with probability |〈φn|ψ〉|2, where |φn〉 is a normalized eigenvector
of the hermitian operator A with eigenvalue an. A back-reaction of A
on Q guarantees that Q is in the eigenstate |φn〉 immediately after the
measurement.
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