QUANTUM MECHANICS I

PHYS 516

Problem Set # 5Distributed: Feb. 24, 2014 Due: February 29, 2014

1. 2-Level Oscillations: The hamiltonian describing a two-level system is $H = \frac{\epsilon}{2}\sigma_z + \gamma\sigma_x$. At t = 0 the initial state is $\psi(t = 0) = |\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Plot $P(\uparrow, t)$ and $P(\downarrow, t)$ for $t \ge 0$.

2. Rabi Oscillations: The hamiltonian describing a two-level system is

$$H = \begin{pmatrix} \frac{\epsilon}{2} & \gamma \cos \omega t \\ \gamma \cos \omega t & -\frac{\epsilon}{2} \end{pmatrix}$$

At t = 0 the initial state is $\psi(t = 0) = |\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Plot $P(\uparrow, t)$ and $P(\downarrow, t)$ for $t \geq 0$ and "interesting choices" of ϵ, γ, ω .

3. Spreading Wavefunctions: $\psi(x, t = 0) = Ne^{-x^2/2\sigma^2}$

- **a.** Compute $\psi(x, t > 0)$.
- **b.** Plot $|\psi(x,t)|^2$ for several well-chosen values of t.
- c. How long does it take for the wave function width to double?

4. Harmonic Oscillations: $\psi_n(x)$ are the normalized harmonic oscillator wavefunctions (assume $m = k = \hbar = 1$). Define $\Phi_n(x,t) = \psi_n(x)e^{-\frac{i}{\hbar}E_nt}$.

- **a.** Plot $|\Phi_0(x,t)|^2$.
- **b.** Plot $|\Phi_1(x,t)|^2$.

c. Plot $|\frac{1}{\sqrt{2}}(\Phi_0(x,t) + \Phi_1(x,t))|^2$. d. Set $\overline{x}(t) = \langle \Phi(x,t) | x | \Phi(x,t) \rangle$, where $\Phi(x,t)$ is the wavefunction defined in c. Plot $\overline{x}(t)$.