QUANTUM MECHANICS I

PHYS 516

Problem Set # 1 Distributed: Jan. 8, 2014 Due: January 17, 2014

1. Scaling: For each of these pairs compute the binding energy and the size (diameter):

System	Energy	Size
hydrogen atom: p^+e^- (nonrelativistic)	13.6 eV	1.058 Å(diam.)
He ^{II} :		
Cu ²⁹ : (nonrelativistic)		
Cu ²⁹ : (relativistic)		
mu-mesic atom: $p^+\mu^-$		
pi-mesic atom: $p^+\pi^-$		
positronium: e^+e^-		
muonium: $\mu^+\mu^-$		
pionium: $\pi^+\pi^-$		
Si exciton: $\epsilon = 11.9, m_e = 0.8m, m_h = 0.4m$		
GaAs exciton: $\epsilon = 12.5, m_e = 0.07m, m_h = 0.4m$		

 El^{I} is neutral Element, and El^{n+1} is Element without n of its electrons. For excitons the electron (m_e) and hole (m_h) effective masses are given as multiples of the free electron mass. Recall that the mass m used in expressions for the hydrogen atom properties is the proton-electron reduced mass.

2. Relativistic Schrodinger Equation: Schrödonger solved the relativistic problem before he proposed his nonrelativistic equation. You will do that here

a. Write down the relativistic equation for a spinless electron in the presence of a spinless proton.

b. Use separation of variables to "get rid of" the angular dependence.

c. Use the useful transformation $R(r) = \frac{1}{r}f(r)$ and write down the radial equation in terms of the unknown function f(r).

d. Compare this equation with an equation in Table 22.6 from Abramowitz and Stegen. What do you conclude?

e. Show

$$E(n,l,\alpha) = \frac{mc^2}{\sqrt{1 + \frac{\alpha^2}{\left(n + \frac{1}{2} + \sqrt{(l + \frac{1}{2})^2 - \alpha^2}\right)^2}}}$$
(1)

f. What effect does relativity have on the "Bohr radius" of an electron?