QUANTUM MECHANICS I

PHYS 516

Problem Set # 5 Distributed: February 4, 2013 Due: Feb. 13, 2013

1. Hydrogen Atom: a. Draw the energy level diagram for the hydrogen atom. Pay particular attention to the energy scale and identify states by their principal quantum number N and orbital angular momentum quantum number l. Identify the energy and orbital degeneracy of each state.

b. What deexcitations are possible from the 4p level?

c. If the electron transitions to the 2s level, what happens?

2. Scaling: Estimate the energy of a μ^- meson around a *Pb* nucleus. Useful information: $m_{\mu}/m_e \simeq 207, Z = 82, E_g = -13.6$ eV.

3. Uncertainty Principle: Use the Uncertainty Principle $\Delta x^2 \Delta p^2 \ge (\hbar/2)^2$ to estimate the ground state energy of the "Planck" harmonic oscillator with Hamiltonian $H = \frac{p^2}{2m} + \frac{1}{2}kx^2$.

4. Crude Classical - Quantum Correspondence: A particle of mass m is placed inside an infinitely deep one dimensional potential well of length L (i.e., between two brick walls).

a. Make a reasonable guess as to its uncertainty in position: Δx^2 .

b. On the basis of your guess in **a**. and the Uncertainty Principle, guess its momentum p.

c. Estimate its ground state energy.

d. Compute the force the particle exerts on either wall. Do this by computing: the momentum transfer per collision and the number of collisions per unit time.

e. Compute the amount of work done when the well is slowly compressed from length L to length $\frac{2}{3}L$.

f. What is the final energy of the particle?

g. Compare this energy with the energy you would compute using the expression constructed in part **c**.

5. Dirac Notation: The four most important states of a quantum system have energy $E_i = -1.5, -0.5, 0.5, 1.5$ and wavefunctions ϕ_i in the absence of a perturbing potential. When a particular perturbation is added your computer code emits the following information for energy eigenvalues ϵ_i and eigenstates ψ_i :

	ψ_1	ψ_2	ψ_3	ψ_4
E:	-3.270	-0.670	1.428	2.512
ϕ_1 :	0.652	-0.690	-0.174	0.258
ϕ_2 :	-0.666	-0.330	-0.294	0.599
ϕ_3 :	0.358	0.626	-0.133	0.679
ϕ_4 :	-0.037	-0.114	0.930	0.335

a. With the perturbing potential present the particle is in the excited state ψ_3 with energy $\epsilon_3 = 1.428$. The perturbation is suddenly removed. What is the probability amplitude that the particle is in the ground state ϕ_1 with energy -1.5? What is the probability?

b. With no perturbing potential present the particle is in the excited state ϕ_3 with energy $E_3 = 0.5$. The perturbing potential is suddenly applied. What is the probability that the particle is in ψ_1 with energy $\epsilon_1 = -3.270$?