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1. Adiabatic change: In an infinitely deep square well potential of
length L the eigenstates of a particle of mass m are the well-known states

φk(x) =
√

2
L

sin
(
kπx
L

)
. In an electrostatic potential V0 sin πx

L
in this well the

eigenstates are ψk(x). You have previously computed these for some V0.
A particle of mass m is placed inside the infinitely deep one-dimensional

square well potential of length L. V0 = 0. The particle eventually gets into
its ground state φ1(x).

An electrostatic potential of the form V0 sin πx
L

is placed in the potential
and V0 is slowly (“adiabatically”) increased from 0 to V0 = 16.

a. What is the final state? Why? Plot this state.
b. What is the energy of this state?
c. How much work was done?
d. Explain why you think your calculations have converged. If you think

they might not have converged, redo parts b., c., and d. until you are
convinced they have.

2. Sudden changes: The particle is in the potential described above,
with V0 = 16, in its ground state ψ1(x). V0 is suddenly changed from V0 = 16
to 0.

a. An energy measurement is made. What are the possible outcomes
E1, E3, E5, · · · and what are the probabilities of these outcomes?

Assume the measurement shows that the particle is in its ground state
φ1(x). Now the potential is suddenly changed from V0 = 0 to V0 = 16.

b. An energy measurement is made again. What are the possible out-
comes E1, E3, E5, · · · and what are the probabilities of these outcomes?
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3. Finite Differences: A particle of mass m is placed inside an infinitely
deep one-dimensional square well potential of length L. Approximate the
kinetic energy term by the standard finite-difference expression:

d2ψ

dx2 |j
=
ψj+1 − 2ψj + ψj−1

(∆x)2

The potential is V (x) = 0.
a. Compute the energy eigenvalues. As usual, set m = h̄ = 1 and L = 10

(and don’t forget 1
2
→ 1

2
!). Plot the eigenvalues computed by the finite

difference method (on the vertical axis) against those available analytically
(on the horizontal axis). Remarks?

b. Plot the eigenvectors associated with the five lowest eigenvalues. On
the same graph plot the analytically available eigenvectors. Why are the
normalizations different?

c. What is the scale factor that needs to be introduced to bring these
plots into agreement (up to sign)? Explain the scale difference between the
analytic and numerical calculations.

4. Problem Set # 2 redux: Now set V (x) = V0 sin πx
L

with V0 = 16.
Compute the five lowest energy eigenvalues using the finite difference method
of Problem #3 and compare with those of Problem #1. Plot the ground state
as computed in this problem (properly scaled) and as computed in Problem
#1 on the same graph. Comments?

5. Numerical Treatment of the Harmonic Oscillator: Repeat the
computation of Problem #3 but with two changes: (a): −∞ < x < +∞, (b)
V (x) = 1

2
kx2. As usual, m = h̄ = k = 1.

a. Compute the energy eigenvalues. Plot the eigenvalues computed by
the finite difference method (vertical) with those available analytically (hor-
izontal). Remarks?

b. Plot the eigenvectors associated with the five lowest eigenvalues. On
the same graph plot the analytically available eigenvectors.

c. What gives you confidence (or lack) that your calculation has con-
verged for these eigenvectors?
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