QUANTUM MECHANICS I

PHYS 516

Problem Set \# 3
 Distributed: Jan. 26, 2011
 Due: Feb. 4, 2011

1. Ballentine, Problem 6.4, pg. 159.
2. Ballentine, Problem 6.6, pg. 159.
3. Coherent States: Ballentine, Problem 6.8, pg. 159.
4. Thermal Energy: $\left\langle\left(n+\frac{1}{2}\right) \hbar \omega\right\rangle_{T}=$?
5. Phonons: A one-dimensional lattice consists of N atoms, each of mass m, connected together with $N-1$ identical springs with spring constant k. The mean atom-atom separation is d. Assume "brick wall" boundary conditions: two extra springs attach the first and last atoms to brick walls.
a. What are the normal modes?
b. For each mode, what is the normal mode frequency ω_{k} ?
c. Compute the mean thermal energy at temperature T.
d. Divide this energy into two parts: a part the depends on the mean excitation above the ground state; and a part that depends only on the ground state energy (it is independent of T).
e. What is the mass-density equivalence of the ground state energy density? (Hint: $\rho c^{2}=\sum_{k} \frac{1}{2} \hbar \omega_{k} /[(N+1) d]$.)
