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1. Coherent States and Minimum Uncertainty: A particle in a har-

monic oscillator potential is in a coherent state |α〉, for which |α〉 = e−α
∗α/2 eαa

† |0〉
so that a|α〉 = α|α〉 (c.f., Ballentine pp. 541-548).

a. Compute x = 〈x〉 = 〈α|x|α〉.
b. Compute ∆x2 = 〈(x− x)2〉.
c. Compute ∆x.
d. Compute p,∆p2,∆p.
e. Compute ∆x∆p.

2. Matrix Mechanics - Discretization: Discretize the Schrödinger equa-
tion for a particle in a box of length L = 1. Set m = h̄ = 1. State explicitly
what your step size is and the size of the matrix you are diagonalizing.

a. Sort and plot all energy eigenvalues.
b. Compare to the eigenvalues that can be obtained analytically.
c. Which eigenfunctions might you believe and which would you definitely

not believe?
d. Plot the “lowest” five eigenfunctions (this means the eigenfunctions be-

longing to the five smallest eigenvalues).
e. Compare these eigenvectors with the analytically available eigenvectors

(c.f., Dicke & Wittke, Chap. 3). What are the similarities and differences?
What can you say about signs and normalization?

3. Matrix Mechanics - More discretization: Discretize the Schrödinger
equation for a particle in a harmonic oscillator potential. Set m = k = h̄ =
1. State explicitly what your step size is and the size of the matrix you are
diagonalizing.

a. Sort and plot all energy eigenvalues from small to large.
b. Compare to the eigenvalues that can be obtained analytically.
c. Which eigenfunctions might you believe and which would you definitely

not believe?
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d. Plot the “lowest” five eigenfunctions (this means the eigenfunctions be-
longing to the five smallest eigenvalues) (c.f., Ballentine, Chap. 6).

e. Compute the matrix elements 〈n+ 1|x|n〉 and 〈n+ 1|p|n〉 for n = 0 using
the numerical eigenvectors.

4. Wave Mechanics - Matrix Mechanics Comparison:
a. For the harmonic oscillator plot the five lowest eigenfunctions ψn(x) =

Hn(x)e−x
2/2/

√
2nn!
√
π, n = 0, 1, 2, 3, 4.

b. Plot the numerical eigenfunctions from Problem 3d. on the same graph.
c. Say something clever about the sign and normalization problems that

you encounter.
d. Compute the matrix elements 〈n+ 1|x|n〉 and 〈n+ 1|p|n〉 for n = 0 using

the analytic eigenvectors. Compare with your answer to Problem 3e..

5. Matrix Mechanics - More discretization: Discretize the Schrödinger
equation for a particle in a bimodal potential V (x) = 1

4x
4 − αx2. Set m = k =

h̄ = 1. Set α = 2. State explicitly what your step size is and the size of the
matrix you are diagonalizing.

a. Sort and plot all energy eigenvalues from small to large.
b. Which eigenfunctions might you believe and which would you definitely

not believe?
c. Plot the “lowest” six eigenfunctions (this means the eigenfunctions be-

longing to the six smallest eigenvalues) (c.f., Ballentine, Chap. 6).
d. Which of these eigenfunctions do you believe? Why?

6. Matrix Mechanics All Over Again: The one-dimensional potential
V (x) is symmetric and it is desired to compute the eigenvalues and eigenfunc-
tions of a particle confined by this potential. Set m = k = h̄ = 1. Choose an
interval−L ≤ x ≤ +L and choose basis functions cos

(
kπx
L

)
for k = 0, 1, 2, · · · , N

and sin
(
kπx
L

)
for n = 1, 2, · · · , N .

A. Choose V (x) = 1
2x

2.
a. What is your reasonable choice of L? What value of N are you using?
b. Compute the matrix elements 〈k|H|k′〉 in the cosine basis.
c. Compute the eigenvalues of this matrix.
d. Plot the four lowest eigenvectors.
e. Do you believe these eigenfunctions? Why/not?
f. If you don’t believe them, what must you do to compute a more believable

set? Do it.
g. Repeat these calculations in the sine basis.
h. Why don’t you need to use the mixed sine/cosine basis?

B. Choose V (x) = 1
4x

4 − αx2.
i. Repeat steps a. through g. for this bimodal potential.
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