QUANTUM MECHANICS I

PHYS 516

Problem Set # 2 Distributed: Jan. 20, 2010 Due: Jan. 29, 2010

1. Expand the expression for the relativistic energies of the Coulomb problem

$$E(N,l) = \frac{mc^2}{\sqrt{1 + \left(\frac{\alpha}{N(\alpha)}\right)^2}}$$

in powers of α to (and including) α^8 . Express your results in terms of the principal quantum number N and the orbital angular momentum l. Here $N(\alpha) = n + \frac{1}{2} + \sqrt{(l + \frac{1}{2})^2 - \alpha^2}$, N = n + l + 1, and n is the "radial" quantum number, the number of nodes in the radial wave function. (**Hint:** use Maple.) Provide a physical interpretation of the first two terms.

2. Compute the energy change in eV. for an electron in state Nl in a nucleus with charge Z caused by the finite nuclear size:

Student	N	l	Z
Hayley Finley	1	0	2
Austen Groener	2	0	3
Frank Jones	2	1	7
Crystal Moorman	3	0	5
Allyson O'Brien	3	1	4
Erica Smith	4	0	26
Nicholas Smith	3	2	2

3. \hat{a} is a nonhermitian operator with matrix elements $\langle n|\hat{a}|n'\rangle = \delta_{n,n'-1}\sqrt{n'}, 0 \leq n, n'....$

- **a.** Write down (part of) the matrix of \hat{a} .
- **b.** What are the matrix elements of the hermitian conjugate operator \hat{a}^{\dagger} ?
- c. Write down (part of) the matrix of this operator.
- **d.** Write down the matrices $\hat{a}\hat{a}^{\dagger}$ and $\hat{a}^{\dagger}\hat{a}$.
- **e.** Write down the commutator $[\hat{a}, \hat{a}^{\dagger}]$.
- **f.** Write down half the anticommutator: $\frac{1}{2} \{ \hat{a}, \hat{a}^{\dagger} \}$.
- **g.** What are the matrix elements of \hat{a} in the coordinate representation: $\langle x|\hat{a}|x'\rangle$?
- h. Repeat parts b. through f. in the coordinate representation.
- i. Write down the normalized matrix elements $\langle x|n\rangle$ of the similarity transformation.