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" LECTURE SIX
Pauli-Weisskopf and the Yukawa Particle

There Is No Reason for Nature to Reject
Particles with Spin Zero

With this lecture 1 return to the main stream which was previously discussed.
In the third lecture I described “why nature is not satisfied by a simple point
charge.” Dirac answered this question. Maybe I am too gossipy, but I suspect
that when Pauli saw Dirac’s work, he thought he had been scooped by him. Pauli
himself was trying to incorporate spin into quantum mechanics and introduced
the Pauli matrices, but he could not arrive at the complete theory. He also
clearly recognized the necessity of making the theory relativistic and yet could
not achieve it. He was known to be a perfectionist who severely criticized other
people’s work, but he had no alternative other than to publish his unsatisfactory
ad hoc theory. Now on the other hand, Dirac established his theory with totally
unexpected acrobatics and solved all the problems on spin as well as making
the theory relativistic. I do not believe Pauli could have been so ascetic as to
have accepted this graciously.

However, in 1934 Pauli ended up retahatmg against Dirac. Pauli showed that
Dirac’s argument that nature is satisfied only by the Dirac equation and not by
‘the Klein-Gordon equation is incorrect. According to him, the Klein-Gordon
equation is not in contradiction with the framework of quantum mechanics, and
there is no reason nature abhors particles with spin 0.

I would like to talk today on how this came about, but we need quite a bit of
preparation. The first item is the quantization of the wave field, and the other
is the problem of Dirac’s negative energy.

Probably you have had the same experience, but the “wave,” when we study
wave mechanics or the wave function v, is discussed sometimes as if it were
a real wave in the three-dimensional space in which we live and sometimes as
if it were an abstract wave in the configuration space. Have you ever worried
as to which is the case? Such confusion with the concept occurred guite a bit
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Figure 6.1 Wolfgang Pauli, 1940
passport photo. [Courlesy of AIP
Emilio Segré Visual Archives]

at the beginning of the development of quantum mechanics. Indeed, if we look
at Schrodinger’s series of papers “Quantization as an Eigenvalue Problem,”
we find that Schrodinger himself was going back and forth between these two
ideas. However, by and large he tended to think that his Y was a wave in
three-dimensional space. For example, he considered e¥r* (X)W (x) as the charge
density which actually exists in space and tried to treat the bulk of the density
as an electron. This idea, however, did not work because ¥*yr will spread with
time and the density becomes diffuse. _

On the other hand, when quantum mechanics was completed in the form of
transformation theory, Schridinger’s v was established as a representation of
the state vector of the mechanical system. It was also called the probability
amplitude, which is a function of the generalized coordinates describing the
mechanical system, and therefore the wave expressed by ¥ exists in the abstract
coordinate space and not in our three-dimensional space. Therefore, for two
particles, ¥ is a function v (x1, X2) of the coordinate x; of the first particle
and the coordinate x, of the second particle, and this is a wave in a six-
dimensional space. Furthermore, more generally, the variables which constitute
the argument of v are not limited to the spatial coordinates X1, X2, ... butcould
be the generalized coordinates of Lagrange or even the more abstract canonical
coordinates of Hamilton’s mechanics.
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Therefore, it looks as if Schridinger’s idea of a wave of real matter seems to
have been completely superseded. The idea that the radiation wave does indeed
exist in our three-dimensional space but the matter wave does not was about (0
become orthodox. :

However, this situation suddenly changed when the idea of quantization of
the wave field was introduced. Namely, it was established that the concept of
a matter wave actually existing in space is just as valid as that of a light wave
existing in space. _

Quantum mechanics was initially developed to study material particles such
as electrons and nuclei. And the phenomena of atoms emitting, absorbing, and
scattering radiation were treated through the analogy with classical mechanics
with the assumption that the matrix elements of the electronic coordinates
correspond to the Fourier components of the classical electron motion; there
was no other recourse than to treat the whole problem by analogy to classical
theory. However, when quantum mechanics was completed in the form of
transformation theory, it was ready to be applied to the radiation field. There
was an attempt to consider a mechanical system that includes atoms as well as
a radiation field and to apply quantum mechanics also to the field, treating the
interaction of radiation and matter consistently. It was Dirac who initiated this
attempt in 1927.

The idea of treating the radiation field quantum mechanically was by no
means new. Already at the beginning of quantum theory was Debye’s idea that
if you decompose the radiation field into plane waves and make its amplifude
discrete such that it satisfies Planck’s condition

E, = Nyhv, N,=0,1,2,...,

then you can derive Planck’s formula. Therefore, instead of simply using
Planck’s condition ad hoc, we can reconsider the amplitude of the wave as
a matrix (or Dirac’s g-number) and apply the new quantum mechanics. Then
the condition E, = N,hv will be naturally derived, and we can interpret
N, as the number of photons with energy Av. If we do this, the particle
nature of radiation will automatically emerge. Indeed soon after Heisenberg
devised matrix mechanics, Born, Jordan, and Heisenberg, who completed
matrix mechanics, themselves proposed to consider the electric and magnetic
fields E and H also as matrices (although at that time the idea of probability
amplitude did not yet exist, and they could not apply their idea to the emission,
absorption, and scattering of radiation).

Needless to say, Dirac naturally started from the idea of Debye and Born. This
initial step could have been taken by any of us mortals (regardless of whether
we can complete it or not), but Dirac introduced -one further idea which is
characteristic of him. It is the weird idea which later came to be known as
second quantization. 1 am afraid that I must digress from spin, but this weird
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idea is very typical of Dirac, and with this idea the matter wave is incorporated
* into the three-dimensional space, so let me spend some time explaining it.

Dirac first considered the Schrodinger equation for one particle. As you know,
it is

[H(x, p) + ?%]w(x, £ =0 (6-1)
1, 7

According to his transformation theory, ¥ (x, t) represents the state vector of
the system at time 7. Now we consider some mechanical quantity (in Dirac’s
nomenclature, an observable) G(x, p), and let us call its eigenvalue g, and
eigenfunction ¢, (x). Here, n = 1,2, 3, ... Since the ¢y (X) constitute a com-
plete, orthogonal system, we can expand v (x, 1) as

YD) =) an(t)pn(X). (6-2)
n
Then if we measure the observable G (x, p) attime 7, the probability of obtaining
the value g, is
,
Pu(t) = |an 0. (6-3)

“This was a conclusion from the transformation theory. Here ¥ and ¢, are all
normalized to 1. H(x, p) represents the energy of the system, and in terms of
the maftrix elements of H,

Huw = [ 6:00H & w0, (6-4)
the expectation value of H is given by
(H) = f Y%, DH X, PV (X, v 6-5)
= Za:Hn‘nfanr.
n.n

Here it is easy to see that (H) is independent of time.
Using the matrix element (6-4), we can derive the time dependence of
ay(t) as

day(t) . __1_
dt ik

D Hyway (D) (6-6)
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from (6-1). Its complex conjugate becomes
da* (t)
it A A Z a/(t)Hy n- (6-6)*

If we examine (6-6) and (6-6)*, we see that we can rewrite them using (H)
of (6-5), namely

day, 1 8(H), da} _ 1 B(H). 67)

dt ik da} dt in day,

From these, if we treat a,, like the coordinate variable and
7, = iha, (6-8)

like its conjugate momentum, and consider
1 7
fd l_h Z JTan,nfan (6'9)
n.n'

as the Hamiltonian, then we can show that a, and 7, satisfy the canonical
equations of motion

H d H
dan _ 0(H)  dmy _ O 6.10)
dt o7y dt day

So far we have considered one mechanical system consisting of one par-
ticle, but let us follow Dirac here and consider an ensemble composed of N
mechanical systems each containing one particle. If we do so, the expectation
~ value of the number of systems in the ensemble which have the value g, for
the observable G at one time is given as N P,, namely

Np = NP, = N|aa|". (6-3)
Therefore, if we set
Ap=NYa, and A} =N'"a, (6-11)
then we get
Ny = A% Aq, o | (6-3")

and if we set, corresponding to (6-8),
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Hn = lhA:a (6_8')
and, corresponding to (6-9),
7=t ) M,H, A (6-9"
= ik ’ ntin.n'fin'y
n.n

then we obtain, corresponding to (6-10),

dA, OoH a1l oF
= —, P = . (6-10")
dt ol1, dt 04,

If we examine {6-10", here also we can regard A, and 7, as canonical variables,
which satisfy canonical equations with H as the Hamiltonian. We have the
relation

>l = f Y, DY (X, Dy =1 (6-12)

n

for a,, while for A,,,

> " Aal* = N. (6-12)

Dirac says that if you worry about the fact that A, and 17, are complex numbers,
then use N, and ®, defined by

Ap = Ny 2eOlh g% — NM2o—iOn/h (6-13)

Dirac proved that these N, and ©, are canonical variables conjugate to each
other. When we use these variables, the Hamiltonian is

H=Y N,ei®/hp, N/2eiOwit, (6-9")

n,n

Here Dirac performed his characteristic acrobatics. Namely, he redefined
these A, and I1, as quantum mechanical g-numbers rather than as ordinary
numbers. That is, he introduced the canonical commutation relation between
Ay and I, to quantize the problem,

ApIly — My Ay = ihé,,, (6-14)
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Why do I call this acrobatics? After all, the Schrodinger equation (6-1) is

already the result of quantization. Therefore, ali of equations (6-10) and (6-10)

derived from that are already quantized. Why must you quantize it once more
as the name second quantization suggests? We mortals stand bewildered here.
However, there is no use being bewildered, so let us try to discover why we
feel bewildered. We shall find the following.

The quantities which are expressed by g-numbers in quantum mechanics, be
they the coordinate g, the momentum p, the energy H, or the quantity G that we
just discussed, are all observables. The concept of observable was introduced
by Dirac, and these are the quantities which are directly measurable by some
experiments. However, quantities like I1,, defined in (6-3), are nothing like
that. In order to determine them, we repeat the measurement of observable
G many times, accumulate a body of data, and then examine which fraction
of measurements give g,. Therefore 7, is not a quantity which is directly
measurable by experiment, and therefore it is not an observable. In that sense,
none of a,, a), 7, are observables.

We can say the same thing about Ny, A,, A, and IT,. First of all, when I
said “an ensemble composed of N mechanical systems each with one particle,”
I meant by ensemble an imagined ensemble, and there is no need to have areal
mechanical system composed of N particles in front of you. We can consider
one mechanical system and repeat the measurement of G many times under the
same conditions and then obtain the number of times N,, in which the value of G
was measured to be g,,. Or we can make the mechanical system number one on
the first day and measure G and destroy the system after the measurement, make
a second mechanical system on the second day and measure the value of G and
destroy that system, make a third mechanical system on the third day, and so on.
Therefore, the ensemble we are considering here is a so-called virtual ensemble
in statistics. When I say number of measurements N, it is not a quantity which
itself is obtained by measuring an observable, but it is a number related to the
accumulation of data on many repeated measurements of observables.

The reason why we were bewildered by Dirac’s second quantization, which
regards N, A, and IT, as g-numbers, lies right here. Some of you might accept
the second quantization without any difficulty. Such a person has to be either
as great as Dirac or a happy-go-lucky type who, although he does not consider
anything deeply, feels as if he understands everything.

Then on what basis did Dirac dare to quantize N, A,, and T, in spite of these
problems? I think the answer is as follows. ‘

We know the fact that the statistical conclusion for virtual ensembles often
agrees with that for real ensembles. Therefore, we may well expect that in
the present problem there may also be such agreement. If so, we can apply
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our conclusion for a “virtual ensemble composed of N mechanical systems
each with one particle” to the “mechanical system of N particles which are
not mutvally interacting.” Now in this real ensemble we can consider N, as an
observable because the determination of Ny, for a mechanical system composed
of N particles amounts to the measurement of G for particle 1, 2, 3, ...,
N, ie., G(x1,p1), G(x2, p2), G(x3, P3), ..., G(Xy, pn). Here the G of the N
particles all commute, and therefore according to the transformation theory,
we can measure all N of the G’s simultaneously and regard it as one set of
measurements, Furthermore, observable N, is not an analytic function but is a
function of N observables G (since the value of N, is determined when the N G
values which mutually commute are measured, N, is a function of all the N G’s),
and therefore N, can be determined by one set of measurements. For this reason
we can consider NV, as a g-number in our real ensemble and likewise A,, and I7,,.

For these reasons, what Dirac did was a heuristic study to find the answer
to the question whether it is possible to describe a many-particle system using
the g-numbers N,, and their conjugates &, or the g-numbers A,, and I7,, and
for that purpose to use equation (6-10') as the fundamental equation starting
from the Hamiltonian (6-9"). Namely, he is using the second quantization as a
heuristic means to see if such an approach is possible and only in this context.

Since the second quantization is a heuristic logic, we must examine whether
the theory using the Hamiltonian (6-9") or (6-9") indeed agrees with the conclu-
sion obtained from the treatment of mmany-particle systems in the ordinary way.
[In the process of quantizing (6-9"), the order of N,}/ 2 and e @/ must be
considered, but the right order will be given later in (6-17').] Here by ordinary
way I mean the method of considering v in coordinate space which for the N
particles gives the Schrodinger equation

h oo
[H(Xl,p1)+H(xQ,pz) +...+ Hxy,pN) + ?5;]-

VX1, X2, ..., Xy) = 0. (6-15)

Dirac actually gives in his paper a proof that this agreement does result if
he takes only the solution ¥(X1, X2, ..., X,) which is symmetric with respect
to the interchange of particles. By this procedure it has been demonstrated
that the solution of the problem by using Hamiltonian (6-9') and commutation
relation (6-14) is equivalent to solving (6-15) for an N-boson system with the
Hamiltonian

N
H=) Hx,p). (6-16)

p=1

Here the probability amplitude that appears when we use Hamiltonian (6-9') or
(6-9") is a function of the type of coordinate used, namely A,, or N,
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W(AL, Ay .oy Apy..)  of YN, Nayoooy Nyl ). (6-17)

In particular, the latter is more commonly used, and the Schrodinger equation
for that case 1s

. . h o
E N e=iOnltgy  oi®ulh N,ifz L2
n,n

¥(Ni, Noy ...y Ny, . ) =0, (6-17"
Dirac showed that the operator ™ ®/1 in this equation has the property
Oy (N) = (N £1).
Actually this proof was notrigorous, but it is very Dirac-like and very interesting
as heuristic theory, so let me introduce it here.

Proof: Since ® is the momentum conjugate to N, we can consider it to be
#3/i9N when it is applied to a function of N. Then we have

2 3
SO/ _ N _ j L ¢ +i - 197
AN~ 213N? 7 313N3

+....

By Taylor’s theorem

1 1
Y(N) = ¢'(N) + 5—,1&"(1\’) + §IWH(N) +...=¢ N1,

therefore
e=OMy(N) = y(N £ 1). Q.ED.

Since the newly discovered theory has now been proved to be correct for
bosons, the use of heuristic theory notwithstanding, there is no reason for us
to hesitate to use it. We can proceed with it with confidence. Therefore we
shall transform the Hamiltonian (6-9"), the equations of motion (6-10"), and the
commutation relation (6-14) together with the relation between A, and N (6-12)
so we can use them for further discussions. Remembering (6-2), we define the
“wave function” W (x) and its “conjugate momentum function” I7(x), which
are g-numbers, by

W) = Y Andn(X) (6-2)

Ix) = ) Mty (%)
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Then we obtain from (6-14) the canonical commutation relations between ¥ (x)
and I7T(x)

VIT(K) — T X)W (x) = it 8(x _ x)
Y (X)W (X) — ¥ X)W (x) =0 (6-14")
NIE) - Mx)Ix) =0,

and we can derive the equation of motion for ¥ as

R0
[H(X, p)+ 1—5} Y(x,t)=0. (6-1")
Furthermore, since we see

(x) = invT(x), (6-8")

the equation of motion of 7 (x) is nothing but the complex conjugate of (6-1",
(Since ¥ is a g-number, we use T instead of * to express the complex conjugate. )
Furthermore, the Hamiltonian (6-9") becomes

H= ;15 f H(x)H(x, p)¥ (X)dv = / v (x)H (x, p)¥ (x)dv, (6-5')
and the relation (6-12" becomes
N:fv;x‘f(x, N (x, 1)dv. (6-12)

This N commutes with 5 » and therefore we see it is independent of time.,
Now if we look at (6-1 ') just obtained, we see it has a similar form to that of the
probability amplitude of one particle, and if we look at the Hamiltonian (6-5,
then we see it has the same form as equation (6-5) for the expectation value of
the energy for one particle. We should not forget, however, that although they
are similar in form, their meanings are entirely different. Namely, (6-1") and
(6-5") are related to the observables of “a mechanical system composed of N
bosons,” and both are relations between g-numbers, whereas (6-1) and (6-5) are
related to the probability amplitude and the expectation value of one particle. We
should note here that neither (6-1"), (6-5"), nor the commutation relation (6-14")
contains the boson number N at all, We therefore can consider those relations as
the fundamental formulas for “the mechanical system with an arbitrary number
of bosons.” Because of this, the wave function ¥ (x), unlike the wave Y in the
coordinate space, is always a function of x in three-dimensional space, which
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is independent of the number of particles. We therefore can regard the wave
function ¥, which is our g-number, as the wave which actually exists in the
three-dimensional space in which we live. Where does the number of particles
appear then? The answer is in (6-12"). Namely, the number of particles appears
related to the amplitude of ¥.

We now know that the wave field which has the Hamiltonian (6-5") and is
quantized by the commutation relation (6-14') is equivalent to the system of
bosons with the Hamiltonian (6-16). Indeed, if we consider ¥ as a g-number
and define A, by (6-2"), then the eigenvalues of the g-number N,, defined by

N, = Al Ay, (6-18)

arc

eigenvaluesof N, =0,1,2,..., (6-18)

and therefore we see clearly the particle nature of the field. Furthermore, if we
adopt Schrodinger’s idea that evr* (x) () is the charge density which actually
exists in space and define the observable

p(X) = e¥ (x)TW(x), (6-19)

(so far we have been using as electric charge —e, but today I shall use e for the
charge of a particle regardless of the sign) then we see that the eigenvalues of
its integral over arbitrary volume V

pv = f px)dx | (6-19)
Vv

are 0, le, 2e, 3e, . . . This shows that our mechanical system has the property
of an assembly of particles with electric chargé e. We should note here that
corresponding to the spreading of Schrodinger’s eW™(x)W (x) in time, the
expectation value of Al x)¥(x) is also blurred with time, and therefore
the expectation value of py also may take a nonintegral value and gradually
approaches 0. However, the eigenvalue of py will never take values other than
0 or positive integers. Therefore, although the expectation values may blur, the
particle nature of electric charge is always conserved.

In this way Schridinger’s unfulfilled wish, namely not to place the wave ¥ (x)
in the configuration space but to welcome it to the three-dimensional space, has
now been realized by using the quantized ¥ (x) rather than ¥ (x). Thus guided
by his heuristic method, Dirac discovered that the field equation satisfied by

R
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¥ (X) has the same form as the equation satisfied by ¥ (x). You should never
forget, however, that even though the form of the equations is the same, v is
the probability amplitude of one particle and is therefore a c-number, whereas
¥, which describes the wave field, is a g-number, and they are conceptually
entirely different things. Furthermore, as I shall tell you later, the coincidence
of the form of the equations is limited only to cases in which the interactions
between particles are neglected; if there are interactions, v and ¥ are not only
conceptually different, but the equations satisfied by them have mathematical
properties which are essentially different from each other. It is often said, “by
the second quantization of ¥ we obtain ¥,” but this statement is wrong for
this reason. In my opinion, just as there are Maxwell equations which are not
quantized, it is better to consider that there exist some equations from the
beginning satisfied by nonquantized ¥, and those equations agree with the
equations of v only when there is no interaction.

Anyhow, it was a great discovery to have found that the mechanical system
with the Hamiltonian (6-5"), i.e., the system of the wave field with equation
(6-1"), and the mechanical system with Hamiltonian (6-16), i.e., a particle
System composed of N particles, give exactly the same answer if we quantize
the former by (6-14") and adopt only the symmetric wave function for the latter.
They are entirely equivalent. It is great because from this we can establish
a Nishida-like theme! in quantum mechanics that says a wave is a particle
and a particle is a wave without any contradiction and obtain its complete
mathematical expression. : |

Dirac’s heuristic study in the form I have considered so far does not work
for a real ensemble in which there is an interaction between particles. This
is because in the virtual ensemble, which he used as a starting point, particle
interactions do not play any role. After all, an individual mechanical system
in his virtual ensemble is a system of one particle. Therefore, there is no
interaction in the system. Also, the ensemble is virtual, and we may consider,
for example, that the first System exists on the first day only, the second on
the second day only, the third on the third day only, etc. Therefore, it is
completely meaningless to consider the interaction between particles in two
different systems. N evertheless, Jordan and Klein have shown that it is possible
to describe a real ensemble of particles which are interacting with each other
through a wave field ¥ (x) which actually exists in three-dimensional Space
if the particles are bosons. According to them, while so far for V(x) in the
Hamiltonian

L. Kitaro Nishida (1870-1945) was a renowned Japanese philosopher and writer, He founded
his own school of philosophy based on the precept that “pure experience” is the sole reality.
His philosophy attempted in his later years to approximate the concept of My (nothingness) of
Zen. Tomonaga’s father, Sanjuro (1871-1951) was a contemporary professor with Nishida in the
department of philosophy, Kyoto University.
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1
H(x,p) = %pz + V(%) (6-20)

of field equation (6-1') we considered only potential energy due to the external
field, but if there is an interaction between particles, for example, Coulomb
repulsion, then we must add to the potential energy V(x) of the external field a
potential energy

Tre! !
Vv (X) = ¢ f e X)L 6-21)

x — x'|

which is caused by the charge density W T(x)¥ (x) of the wave field itself,
and use

V,(X) = V(X) + Vwave(x)-
Namely, as a Hamiltonian in (6-1') we use
1, ,
Hx,p) = %p + V(X) + Vivave (X) (6-20)

and the equation

T e’ ! :
[ipZ +V(x) —[—e[ VW) 1y + ﬁi} W(x, 1) =0 (6-22)
2m jx — x’| i ot

instead of (6—1'). Jordan and Klein discovered that if we do this, this theory and -
the quantum theory of a boson system with the Hamiltonian "

N N 2

1 € 3 !
H=) |5 P+ Vi o 6-23 i
g[zml’n*“ ()]+,§v,ixv—xvr| (6-23)

give results that agree in all respects. It is worth noting that in the second
summation of (6-23) the term with v = v’ is excluded. As a result of this, for
. the case of one particle, the term involving ¢ /|x, — X,| does not appear in
(6-23) even if we use (6-22), in which Vy,ve(X) is included.

- From this work of Jordan and Klein, the difference between ¥ and y» becomes
even clearer. The field equation (6-22) for ¥ has an entirely different form from
(6-1), which gives the probability amplitude of one particle, i.e.,

1 5 ., R _ .
[—2—m-p + V(&) + ?5].‘#(& 1) =0. (6-22)
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Moreover, this difference is fundamental. The reason is that, according to the
transformation theory, the probability amplitude must satisfy the principle of
superposition, and therefore the equation satisfied by  should always be in
linear form, but (6-22) is not linear with respect to ¥ . For this reason even if we
consider that ¥ is not a g-number, the field equation (6-22) is of such a nature
that it can never be considered as the equation for . We now see clearly that
it is entirely incorrect to say, “¥ is obtained by the second quantization of ¥

Equation (6-22), although not derivable by heuristic reasoning alone, is a field
equation which takes into account the interaction of particles correctly, and if
¥ is not quantized, it should correspond to the classical Maxwell equation. Do
you ask, Why then is there an # on the left-hand side of (6-22)7 That is a good
question. It is the sort of question that a happy-go-lucky person cannot ask.
Since you noticed this very good point, try to answer it yourself. (Hint: Replace
in the argument m — hm, V — ki, e — he, and & — 'ﬁ/\/ﬁ. Consider the
meaning of these replacements.)

I have already talked for an unintentionally long time about Dirac’s acrobatics,
but all he wanted to show was that a system of many bosons and the wave field
in three-dimensional space are equivalent in quantuth mechanics. He tried to
apply this conclusion to photons to discuss quantum-mechanically the emission,
absorption, and scattering of photons by atoms. You might think that in order
to apply the argument used so far directly to photons, we need the equation
of probability amplitude of one photon. However, the photon is a relativistic
particle, and we cannot use (6-1) for it. Many people at that time attempted
without success to find a probability amplitude for one photon. (It was shown
later that in the relativistic theory, not only for the case of photons, but in
general, the probability amplitude in the x, y, z space does not exist.) However,
as has now become clear after this long talk, it is the field equation that has to
be quantized and not that of the probability amplitude. Therefore, even if we do
not know the equation of probability amplitude, it suffices just to quantize the
field equation, if it is known. Dirac knew this right from the beginning without
- needing this long exposition. He showed that by extending Debye’s idea the
correct answer for the absorption and emission of photons and the scattering
of photons by atoms is obtained by quantizing the radiation field. Following
this work of Dirac’s, Fermi as well as Heisenberg and Pauli formalized more
completely the interaction between an atom and the electromagnetic field by
considering the electron and the quantized Maxwell field simultaneously. In
particular, in their massive paper titled “On the Quantum Mechanics of the
Wave Field” (1929), Heisenberg and Pauli, unlike Dirac and Fermi, treated the
problem by considering not only the electromagnetic field but also the electron
itself as a quantized field. (In this case, however, quantization cannot be done
by (6-14"), for if so, the electron would be a boson. Then how to quantize
an electron? I shall talk about this shortly.) In other words, in this paper they
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consider the Dirac equation not as the equation for the probability amplitude of
an electron but as the relativistic field equation for the electron.

If we accept these premises, then probably it is all right to adopt as another
possible relativistic field equation the Klein-Gordon equation, which was re- -
jected by Dirac as an unsuitable equation for probability amplitude. Therefore,
probably it is pot that surprising that on one clear day? it occurred to Pauli
to consider the Klein-Gordon equation and to quantize it with the Maxwell
equations in a similar vein as the Heisenberg-Pauli theory.

Therefore he wrote a paper in 1934, helped by his assistant Victor Weisskopf.
The paper’s theme, “Nature has no reason to reject particle of spin zero,” is the
subtitle of my lecture today. Now we really head for the crux of the matter, but
before doing that, let me finish the aforementioned problem, namely how to
quantize the electron field.

Thus far I have told you that the particle which appears from the quantization
of the wave field is a boson, but we would also like to know if we can treat
a fermion like the electron by the method of field quantization. It was the
work by Jordan and Wigner which appeared in 1928, one year before the
work of Heisenberg anc Pauli, which answered this question. Their answer
was affirmative. Howev :r, we cannot, of course, use the commutation relation
(6-14", but instead we must use the relation in which the minus sign on the
left-hand side of (6-14") is replaced by a plus sign.

Y E)I() + T () = ihd(x —X)
TR E) +TEHP(E) =0 (6-14),
Ix)IE) +OE)I(x) =0.

They discovered these relations, which are called anticommutation relations.
When these relations exist, the eigenvalues of the observable N, defined by
(6-18) are

eigenvalues of N, =0, 1, (6-18"),

and therefore either 0 or 1 of this particle can exist in the state r, and thus Pauli’s
exclusion principle is clearly satisfied. Furthermore, it is possible to prove that
the wave field thus quantized is completely equivalent in all respects to the
solution in which only the antisymmetric wave function of the particle system
with the Hamiltonian (6-16) or (6-23) is adopted, i.e., a system of fermions.
Therefore the theme which I told you earlier & la Nishida’s philosophy works
for both bosons and fermions.

2. Tomonaga uses the phrase Un bel di from the aria of Madame Butterfly.
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Now we will go into the story of Pauli and Weisskopf, which is the main
theme of this lecture. Since I had to lay the groundwork by delving into the
huge problem of wave equals particle and particle equals wave, I have nearly
run out of time. However, because of this long preparation you probably have
understood the background for Pauli and Weisskopf’s work, so let me just give
you their results.

As I told you earlier, Pauli and Weisskopf tried to quantize the Klein-
Gordon equation together with the Maxwell equations using (6-14"). They
were able to do so without any inconsistencies, and from the Klein-Gordon
field they obtained bosons of mass m and spin 0, and very interestingly they
found that the electric charge of this boson can take +¢ or —e, i.e., be either
- positive or negative. Moreover, not only was this possible, but they also found .

. through calculation that when there exists a photon whose Av is larger than
: 2mc?, then its absorption can create a pair of particles with --¢ and —e, and
conversely, if there is a +e/ — e pair, then they can be annihilated by emitting
hv > 2mc?, _

Furthermore, Pauli and Weisskopf objected to regarding the Dirac equation
as the equation of relativistic probability amplitude of one electron although
it is first order. According to them, the Dirac equation is also the relativistic
field equation for the electron and it cannot be considered fo be an equation
of probability amplitude in x, y, z space. They insisted that a concept like
“the probability of a particle to be at x in space” is meaningless for relativistic
particles—be they electrons, photons, or Klein-Gordon particles—and therefore
it is meaningless to interpret v (x) as the probability amplitude.

One basis for this last declaration is that, if we consider the Dirac equation
to be the equation of probability amplitude of an electron, then there appears
the peculiar state in which the electron has a negative energy, and the positive-
energy electron will fall into the negative-energy state by emitting energy as
a result of interaction with the electromagnetic field. If this can happen, many
peculiar phenomena which contradict reality will follow. In order to cope with
this difficulty, around 1930 Dirac introduced the hypothesis that the vacuum
is the state in which all the negative-energy levels are occupied by electrons.
Then because of the Pauli principle, the positive-energy electrons cannot fall
into negative energy. In Pauli’s opinion, if all the negative-energy levels are
filled by so many electrons, there will be an infinite number of electrons, and
that is already way beyond the one-body problem.

For these reasons Pauli deemed that, justas in the Heisenberg-Pauli paper, we
should treat the Dirac equation as a field equation rather than as an equation for
probability amplitude. Dirac, apparently, did not care for Pauli taking Dirac’s
equation as the field equation and proposed in his new theoretical formulation of
the many-electron problem published in 1932, which later came to be called the
many-time theory, to use the probability amplitude  in the coordinate system
[however, in order to make ¥ relativistic we extend the concept of coordinates
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in the wave function by assigning a different time for each electron, hence
Y (X1, 11, X2, 12, X3, 13, .. )]

Now the other side of the story is that Dirac himself was starting to anticipate
from his hypothesis of filling the negative-energy levels that in addition to the
usual electron, i.e., an electron with negative charge, there exists an electron
with positive charge, just as bosons of +e and —e appear from quantizing
the Klein-Gordon field. His idea was that if the filling of negative-energy
levels is incomplete and an electron is missing from some negative-energy
level, then that “hole” has a positive energy and behaves as if it has a positive
charge. (Dirac’s idea is that lack of negative must mean positive.) Therefore, a
hole would look like an electron with positive charge. (Initially, Dirac thought
that this hole was a proton. However, Oppenheimer raised the criticism that
according to this idea, the hole would be immediately filled by a nearby electron
and the hydrogen atom could not exist stably. Furthermore, it was pointed out
by the mathematician Hermann Weyl that this hole should behave as if it had
the same mass as an electron.)

According to this idea, if there is a photon with zv > 2m ¢?, then an electron in
a negative-energy level is excited to a positive-energy level, absorbing energy,
and as a result an electron with positive energy and ahole in a negative level—in
other words, a positive-energy, positive-charge electron—are created. By the
way, this positively charged electron was discovered experimentally in 1932
by Carl Anderson and was named positron.

I told you that both positively and negatively charged particles can appear
when the Klein-Gordon equation is quantized. However, Dirac already pointed
out in his 1928 paper, which I talked about in lecture 3, that even without
quantization the equation has one solution which behaves like a particle with
negative charge and one which behaves like a particle with positive charge. (I
shall discuss this further in the next lecture.) He gave this as one of the reasons
for insisting that the electron cannot be described by this equation. (At that time
only electrons with negative charge were believed to exist.)

However, after the discovery of the positron, not only did this reason become
groundless but it also became apparent that both bosons related to the Klein-
Gordon equation and fermions related to the Dirac equation have a very
similar property in that they have positive and negative charge, and from these
resemblances it became quite natural to believe that both the Klein-Gordon
equation and the Dirac equation have equally good raison d’étre. For these
reasons Pauli confidently pushed for the resurrection of the Kiein-Gordon field.
Furthermore, if you quantize the Dirac equation in the manner of Heisenberg
and Pauli, then it is possible with some ingenuity to incorporate positrons and
pair creation into the theory without any artificial postulates such as filling the
negative-energy levels and holes. Because of these points, Pauli thought it much
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more natural to regard the Dirac equation as the field equation rather than as
the equation of probability amplitude as Dirac preferred.

Thus Pauli and Weisskopf reinstated the Klein-Gordon equation, which Dirac
had rejected. It seems Pauli was quite euphoric about this work, and a part of
the paper sounds as if he is teasing Dirac by using exactly the phrase which
Dirac had used in his other paper. Freely translated, it reads as follows,

“The most interesting part of our theory is that the energy is always positive
automatically (namely, without using a superfluous hypothesis such as hole
theory). After witnessing that the relativistic scalar theory (the theory of the
Klein-Gordon field) can be constructed without any such hypothesis, one might
wonder why nature had made no use of the possibility from the theory that
there exist spin-zero bosons with charge +e and the possibility that they can
be created from Av or annihilated, emitting hv.” The italicized phrase is taken
directly from the paper in which Dirac predicted the existence of a certain
particle (magnetic monopole). It seems to me that the tone of this sentence and
that of Dirac’s sentence (which I quoted in lecture 3) in the beginning of his
paper on the Dirac equation are nearly identical.

This sentence sounds as if Pauli wanted to say that there exist charged

~ particles with spin 0, but when we read on we find on the contrary that he

sounds as if he is looking for some reason why such a particle cannot be found.
However, when Pauli was writing this paper in 1934, the new idea of the meson
was already taking shape in Yukawa’s mind, and the relativistic scalar theory
(more accurately, pseudoscalar theory) would play a big role in the theory of
mesons. Therefore, nature indeed did use this possibility in the appearance of
7T mesons.

All the same, Pauli and Weisskopf’s work and Yukawa’s idea of the meson
appeared one after the other with incredible timing. The history of physics can
sometimes be very theatrical.




