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THE CLAS_SJICAL ORIGIN OF THE SCHRODINGER EQUATIONS
AND THE DARWIN CORRECTION TERMS

R. Gilmore
The ‘I‘hesis2

The evolution of Wave Mechanics is a tale full of~wonder.
It was based in part on knowledge, progressed through guesswork, and succeeded
with luck. It resulted in a great deal of understanding, was the crowning
achievement of, and most bitter disappointment to, its architects.

In 1905, Einstein proposed that light consisted of guantized
bundles of energy, called photons 1, possessing particle-like, as well as
wave-like properties. The momentum to be assd-ciated with a photon of wave
length M is -

p = h/ N = hv/ c.

In order to explain quantization in the microscopic domain,
de Broghe turned this relation around, and assumed that matter in general
might possess wave-like as well as particle-like propertlesz. He found that
the only relativistically invariant way to associate a wavelength X with a particle’

of momentum p was through the relationship

» = h/ |pl.

This equation set the stage for Schrodinger, who was thoroughly

- familiar with physics. He was aware, as was Hamilton almost 100 years

earller(4b) , of a very close relationship between classmal mechanics and
geometrical opt1cs { classical optlcs) The elkonal equatlon, which describes

the phase of a disturbance in classical optlcs, is formally identical to the

(4a

Hamiltonian-Jacobi equatlon ) of clagsical méechanics.




Schrddinger knew that classical optics was the short wave-
length limit of wave optics. He also knew that photons with both wave- and
particle‘-like properties were at the bottom of optics. He felt', with de Broglie,
that massive particles with both particle- and wave-like properties were at
the bottom of mechanics. Could classical mechanies be just the short wave-
length limit of something more general, which should be proper analogy be
called wave mechanics? (Fig. 1) He set out to find the answer.

The Analysis

Maxwell's equations in a material medium are

]

v x H - é‘-g{—)- ;_= %ﬁ i

TV x E + 198 0
C.at | (1)

V.- D = dnp

V. B = 0

The two constitutive equations relating D and B to E and H are

D (x,t)

&(x) B (xt)
N (2}

B (x,1) W) 7 (%, 1) -

We have assumed that € (X) and u(x) are scalar functions of position only.
In the absence of sources, these four equations (1) can be reduced to a pair,
one involving only the components of the & field, the other involving H field

components only:

2 = J— .

(vP - B S ) E 4 YE X (UxE) + VL LB - 0 (3E)
c” ot B ' ¢
2 _ ‘ _t

(v¢ -k Ly B 4 Y x(xE) O+ VR . ) =0 (3H)
c ot £ B,

The classical optics approximation is this: the disturbance
propagates locally (over a few wavelengths) as if it were in free space or a
uniform medium. This is equivalent to saying that the fractional changes in

£ (x) and p(x) are small over the distance of a wavelength.
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_— Ve << g/
(4)
Up << e/

In this limit, the equations for E and H become simply

2 pe % o
wve-E 20 E =0 (3"
c ot :
2 .
2 3 —
we-E ) H =0 (4"
¢“ ot

Each component of the E and H field separately obeys an equation of the form
2

(v - B Dy ey = 0 (5)
c at

For a disturbance of fixed frequency w, the substitution of

a solution ¢(x,t) = ¢{x) it gives the equation
o2
(vF e B 0y g - 0 (5"
c

The eikonal approximation is the statement that the amplitude
of the disturbance is a much more slowly varying function of position than the
‘phase. The trial solution
3 . - ik S(x)
« o) = $ %) e

k, = 1/)(0 = w/c) leads to two equations:
3 Ty 2
L W92 = wm e + KoV dotx) (6Re)
$,(x)
VS . 4 Vs = 0 (6Im)
%

The equation 6Re gives, in the limit X - 0

(v8) 2 = ux) e(x) = n°(x) > 1 (7C1.0)

The Hamilton-Jacobi equation for a particle of fixed energy

(corresponding to an optical disturbance of fixed frequency) is

H(q VS(@) = E (8)
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Yor a negatively charged particle (Q = -e) in a potential $, this is

\/(c?S)Z -!—(mcz)2 -ed

o
=

(7 CL. M}
This - may be rewritten in such a way as to emphasize its relation to equation 7:
(5312 = 12 (E+e¢)2 - (mc)2 (7°Cl. M)
C

The non-relativistic limit may be taken by shifting the energy zero pomt,

TE=W+ mcz, and neglecting small terms:

(¥5)% = 2m (W+ed) . (7''CL M)

The Synthesis

If each fixed frequency component of the electric and magnetic
field obeys an equation of the form

—) Y(x) = 0 (51)
A (x)

why shouldn't a matier wave field also obey this same equation, re'asoned5

Schrodinger ? It was not difficult to make the substitution 2x/ X = p/Y

2

e 4 2

1 - o ¢

> P} ${x) = O (9)

4

Nor was it difficult to write the momentum in terms of the energy in a relativisti-
cally invariant way

E + ed)? - cp? = (meH? (10 Rel)

The equation which Schrddinger derived by these analogies and this reasoning
was

* If we demand this to be an identity for all matter fields, then a trivial
consequence is p = {{ /i) RV, where R is an orthonormal transformation.
If we choose R =1, then

-

v

H
S}
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He assumed that this relativistically invariant equation governed the structure
of matter on the atomic scale.

Disappointment.

When he solved this equation for the energy level structure
of the hydrogen atom, he found that his results disagreed with experimental

findings. He tucked this equation away in his drawer. Several months later,

he tried the same kind of derivation, using the non relativistic relation

; P L es = w (10 NR)
L 2m.
"; This time, the equation which he found gave more reasonable results
1 2 - -
{“—— (:EV) - e@}zp(x) = Wy (x) (11 NR)
2m i :

Scﬁrb’dinger solved this equation for the hydrogen atom, compared his calculations
with spectrographs, published the results, and thereby founded Wave Mechanics.
We now know why the second equation (11 NR) which.
Schrodinger found is a better representation for physical realtiy than the first
{11 Rel). The electron is a spin 1/ 2 particle and as such must be described
by a relativistically invariant equation for a spin 1 / 2 particle {the Dirac -
equation) . Equation (11 Rel) is a relativistic equation for a spin 0 particle,
which the electron is not. However, within a few spin-dependent terms, the
Klein-Gordon equation (11 Rel) and the Dirac equation have practically the same
non-relativistic limit. Therefore, except for the relativistic S-like states,
the Schrédinger equation should present a better picture of the hydrogen.atom's
energy-level structure than the Klein-Gordon equation. And it does:*

“The Antithesis

The immediate successes of the Wave Mechanics had a
profound effect. It was assumed that the Schrb'din'ger equation was an exact
description of Nature in the non-relativistic reglme The procedure for computxng
energy levels of a system was reduced to an algonthm set up the classical
Hamiltonian for the system, replace p everywhere by p = (Jd/ i)V, and solve
the resulting elgenvalue equatlon '

_H_(_ q, (F/ i)V) t!r(c'n = E { (q)

[

In the light . of success after success, the assumptions and -
. analogies underlymg the Schrodinger equatmn were generally overlooked
and forgotten._ These assumptions and analogies are not always reasonable.
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One such assumption is that the fractional changes in the indices of refraction
are small over the distance of an optical wavelength. This corresponds to the
assumption of an electrostatic potential varying slowly over an electron wave-
. length. However, in near a nuceus, the electrostatic potential does change
appreciably over such a small distance. On the strength of these qualitative
arguments, the Schrodinger equation should not be expected to provide an
accurate description for S-like (I, = 0} states

Can we make more quantltatwe statements ?

The Synthesis Again

When the fractlonal change per wavelength for either 1(x)
or ¢x) is no longer negligible, equations (3E) and (3H) tell us that it is no
longer possible to write down a simple scalar equation which the components
of the E and B fields separately satisfy.

However, in the spirit of Schrédinger's approach, we are
still able to proceed. We know that the electromagnetic field components do
not in general satisfy equation 5'. It ig possible to add a correction term to
this equation in such a way that the field components sat1sfy this augmented
equation to a better approximation, than they satisfy 5'. Then, proceedmg as
before, it is possible to derive a wave €quation which can be assumed to be a

correspondingly better approximation to physical reality than is the Schrodinger
equation.

Such a procedure is open to even mére criticism than the 5
derivation of the Schrodinger equation; nevertheless, it gives us the Darwm6 :
correction term which is usually described in textbooks on Quantum- Mechanics

ag having no classical analogue. We will, by this ad hoc procedure, see exactly ‘
what the classical analogue is. ' A ’§

p ' The E field obeys the equation (with Vp = 0) \ ¢ N\
2- . 8 1 8 8 1 8c 8 1 8¢ !
D7(x) + = = T ' E i
axl e Bxl axl P 55:_2 Bxl £ 8x3 1
i
-
9 1 ge 2 - a 1 9 o 1 ot _ !
o, ¢ v, &+ Bx, © %, %, ¢ 0%, E, =0 |
| l 9 g 1 9:¢ 2 o 1 oz E
By %) on tE, 00 tan g oo s
N J \ J

i
i




SCHRODINGER EQUATIONS AND DARWIN CORRECTION TERMS 51.

2
with £ 2(}-;) - y2 B elx) B . There is no convient way to diagonalize
z Z Y g

c ot .
these equations. Instead, we can form approximate diagonal equations by

neglecting the offdiagonal terms ’

- o2 '
{ v2 o BE) () 2 2} E. +—0— 12 5 .o . 3EY
s € i
c ot i i no sum on i

In the same crude approximation, the magnetic field components obey the equation

- - 2
2 wx) e(x) o } _ ”
v© - H =0 (3H"")
{ c2 .atz i

We are looking for a single scalar equation which each field component separately
approximately satisfies. To find such an approximate equation, we take the

mean of the six equations represented by 3E'' and 3H'', using

3 9 1 3¢ ~ 13 8 1 8¢
o By ew B)OF 2 B e 2 ax, EtEEy)

The single scalar equation approximately obeyed by each field component is then

2
2 pe D 1 . Ve _
{V_-—ZC a_zt }LIJ+:1-V (s ) = 0 {12)

The first bracket has already been analyzed.
The second term presents somewhat of a problem.
Specifically, how can we get something sensible from Ve/e ? Within classical

optics, ¢ has the following properties:

1. ¢ >1

2. € 1_s a slowly vé.rying function of position except in regions of
extreme inhomogeneity, that is, near singularities.

| - p? + (m_c) 2

. For photons, &s; = (Ao/ ) z . o/ ) 2 2

& ' : P, + (mc)

where the subscript o refers to free space behavior, and m _ is the zero 'rest-
mass' of the photon. For an eléctron, the choice ¢/ & = P does not endow ¢
with the desirable properties 1. and 2,, which we would like to maintain in

wave mechanics as well as wave optics. However, the choice

- 2 2.2 2,2
e = (P} + (mc) 7/ (m )
does have these properties. Although this choice for ¢ is inconsistent with 51,
it gives reasonable results, and is thus in the spirit of the game.




it is familiar in its non-relativistic limit. We take this limit by putting E = mc
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To proceed, we compute

Ve _ V(Ete®® _ 2ves
¢ (E +ed®’ (E +e @)

| o _
{ch)z t (Eted)? - medH? ¢ '(HZC) A Arge:a- ¢}=o (13)

Although this does not look familiar in its present form,
2

+ W and expanding:

2 . 2
[ _/{1_ 2 - ed - (W + e@)
Zm Zmc (14)
i vZes Ver ¥ (Vew) ® 0
. v + —--2—— - _2—‘——A 2 ] Lp bl WLIJ
4m mec +Wted me +W+ed  (mc rWted)

Fmally, keeping only first order correctlons ‘this equation becomes

AZ-VZ—QQI—II—B-—Z‘i (V-) —2—2}{2 | V2e§+6’8¢+ e@-ﬁ}]lb—wlll
Zm 8m’c 4m°ec '

(15)

The first two terms on the left are the standard ter'ms of the Schrodinger

equation approximation. The third term is the relat1v1stlc mass-velocity correctlon
It comes directly from the non relat1v1st1c211m1t of any relativistic equation,

and is obtained by putting (W + é®) = - Zﬁm Vz = gm . It holds for the Dirac

as well as the Klein-Gordon equation. The last two terms are the leading terms

in corrections which take into account the fact that Maxwell's equations in a
material medium are not exactly of the form 3E', 3H', but are actually of the form
3E, 3H. These are called the Darwin correction terms (the numerical factor
should be 1/ 8 rather than 1/4). They were first discovered by Darw1n61n

taking the non-relativistic limit of the Dirac equé.fi-on;

' These two correction-terms are not of relativistic origin.
Contrary to belief, they do have a classical analogue., It is this: The change
induced in the B field by a rapidly varying dielectric constant cannot be taken
into account solely by equations of the form '

: {VZ +-k2('}-:)} W(%) = 0

The more accurate optical equations must have some additional correction

terms; it is these terms which are the classical analogues of the Darwin terms.

R
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Klein~Gordon ' Virac fiquation
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Fig. 2: Graphical representation for the adeguacy of
equation {XI NR) and the inadequacy of squation (XI Rel)

in describing the hydpogen atom.
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Conclusion

We have followed the strange path of analogy and assumption
taken by Schrodinger to derive the Schrodinger equation. When some assumptions
were no longer valid, we retraced our steps, and found the quantutﬁ analogues
of the classical correction terms. In this way, we found all but the spin-
dependent terms which result in the non-relativistic limit of the Dirac equation.
Each term has a specific interpretation within the framework of classical -
theory.

7 1t would be a mistake to lend too much credence either to
the derivation of the equations or of the correction terms. Nevertheless, the
results are generally correct. It is therefore satisfying that much better methods

" now exist both to derive these equations and to take their non-relativistic

limits 7 .

REFERENCES

1. A. Einstein, Ann. Physik 17, 132 (1905).
2. L. deBroglie, Nature 112, 540 (1923).
1.. deBroglie These, Paris (1924). ]
L. deBroglie, Ann. de Physique 3, 22 (1925).
3. M. Born, W. Wolf, Principles of Optics, Pergamon Press (2nd edition),
New York, 1964, '
4. H. Goldstein, Classical Mechanics, Addison ‘Wesley ( Cambridge, Mass.)
: Chapter 9, p. 273 and 314 (1959).
5. P. A. M. Dirac, Scientific Amer. 208, 45 (1963).
E. Schrodinger, Ann. d. Physik 79, 391 (1928).
E. Schrodinger, Ann. d. Physik 79, 489 (19206) .
“E. Schrodinger, Ann. d. Physik 80, 437 (1925).
E. Schrodinger, Ann. d. Physik 81, 109 (1926).
C. G. Darwin, Proc. Roy. Soc. (L.ondon) AA@;;
L. L. Foldy, 8. A. Wouthuysen, Phys. Rev. 78, 29 (1950).




rd

54,

'SCHRODINGER EQUATIONS AND DARWIN ‘CORRECTION TERMS |

REFERENCES FOR FIGURE 1

C-‘_reémetricai Optics; Pririciple'of Least Time, QOeuvres de Fermat ,
_ Volume 2, p. 354 (Paris 1891). . ,
W R. Hamilton, Least Action Formulation.of Classical Mechamcs,
Trans. Roy. Irish Acad. 17, 1 (1833) :
Hamllton s Mathematical Papers, J.L. Synge, W. Conway, edltors,
Cambridge University Press 1, p. 285.

J.. C. Maxwell, Wave Optlcs, A Treatige on Electricity and Magnetism :
' Oxford Un1ver31ty Press, 1873,

A, Sommerfeld and J. Runger, The Eikonal Approximation, Ann. d. Physik

35, 289 (1911)..

The Quantum Patchwork

N. Bohr, Phil. Mag. 26, 1 (1913},

W. Wilson, Phil. Mag. 29, 795 (1915),

A. Sommerfeld, Ann. d. Physik 51, 1 (1918},

M. Born forbids W. Heisenberg to try extending the Bohr-Sermnmerfeld
Quantum Patchwork. Matrix Mechanics results.

Wave Mechanics

‘L. deBroglie, Nature 112, 540 (1923).

L. deBroglie, These, Paris (1924)

L. deBroghe, Ann. de Phys1que 322 (1 925)

P. A. M. Dlrac Scientific Amerlcan 208 45-1963). (Schrodinger
derwes the Klein-Gordon equation, solves for the hydrogen
atom, never publishes).

E. Schrodinger, Ann. d. Physik 79, 361 (1926).

E. ~Schrodinger, Ann. d. Physik 19, 489 (1920).

"E. Schrodinger, Ann. d. Physik 80, 437 (192%) .

E. Schrodinger, Ann. d. Phys1k 81, 109 (1928).
The WKB Approximation

- J. Liouville, J. de Math. 2, 1o (1837).

J. Liouville, J. de Math, 2, 418 (1837).

Lord Rayleigh, Proc. Roy. Soc. (London) A8 207 {1912).
H. Jeffreys, Proc. London Math. Soc. (2) 23, 428 (1923).
G. Wentzel, Zeits f. Physik 38, 518 (1926).

H. A. Kramers, Zeits. f. Physik 39, 828 (192%).

L. Brillouin, Comptes Rendus 183, 24 (1926).




—a

sik

SCHRODINGER. EQUATIONS AND DARWIN CORRECTION TERMS . 55,

9. P. Frank, R. von Miges, Derivation of the Eikonal Approximation from
o Geometrical Optics, Die Differential-und Integral -
gleichungen der Mechanik und Physik , Braunschweig:
‘Friederich Viewig und Sohn (1935), Vol. II, Prob. 4-2.
10, Path Integral Formulation of Wave Mechanics, based on the Action Integral
R. P. Feynman, Revs. Mod. Phys. 20, 267 (1948).
R. P. Feynman, A. R. Hibbs, Path Integrals and Quantum Mechamcs,
McGraw Hill, New York, 1965,
11, Path Integral Formulation of Maxwell's Equatmns, based on the Time

Integral,
This has not yet been forr_nulated mathematically, although it seems an easy
problem. The groundwork was laid a long time ago:
C. Huyghens, {(Huyghens' Principle) Traite de la Lumiere 1678

T. Young, (Interference between waves) Phil, Trans. Roy. Soc. (Lon)
xcii 12, 387 (1802). Young's Works Vol. 1, p. 202.

"A. Fresnel, (Synthesis of Huyghen's, -Young's Prin.) Ann. Chim. et
Phys. (2) 1, 239 (1816) Oevres 1, p89 and 129,




