Homework \#4

January 29, 2016

Dustin Jay Hill

1. Let $f_{1}(\boldsymbol{x})=\exp \left(-\frac{\left(\boldsymbol{x}-\boldsymbol{a}_{1}\right)^{2}}{2 \sigma^{2}}\right)$ and $f_{2}(\boldsymbol{x})=\exp \left(-\frac{\left(\boldsymbol{x}-\boldsymbol{a}_{2}\right)^{2}}{2 \sigma^{2}}\right)$.

$$
\begin{gathered}
\mathcal{I}=\int_{\mathbb{R}^{n}} \nabla f_{1}(\boldsymbol{x}) \cdot \nabla f_{2}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
\mathcal{I}=\frac{1}{\sigma^{4}} \int_{\mathbb{R}^{n}}\left(\boldsymbol{x}-\boldsymbol{a}_{1}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{a}_{2}\right) \exp \left(-\frac{\left(\boldsymbol{x}-\boldsymbol{a}_{1}\right)^{2}}{2 \sigma^{2}}-\frac{\left(\boldsymbol{x}-\boldsymbol{a}_{2}\right)^{2}}{2 \sigma^{2}}\right) \mathrm{d} \boldsymbol{x} \\
\mathcal{I}=\frac{1}{\sigma^{4}} \exp \left(-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4 \sigma^{2}}\right) \int_{\mathbb{R}^{n}}\left[\left(\boldsymbol{x}-\frac{\boldsymbol{a}_{1}+\boldsymbol{a}_{2}}{2}\right)^{2}-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4}\right] \exp \left(-\frac{\left(\boldsymbol{x}-\frac{\boldsymbol{a}_{1}+\boldsymbol{a}_{2}}{2}\right)^{2}}{\sigma^{2}}\right) \mathrm{d} \boldsymbol{x} \\
\mathcal{I}==\frac{1}{\sigma^{4}} \exp \left(-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4 \sigma^{2}}\right)\left\{\int\left(\boldsymbol{x}-\frac{\boldsymbol{a}_{1}+\boldsymbol{a}_{2}}{2}\right)^{2} \exp \left(-\frac{\left(\boldsymbol{x}-\frac{\boldsymbol{a}_{1}+\boldsymbol{a}_{2}}{2}\right)^{2}}{\sigma^{2}}\right) \mathrm{d} \boldsymbol{x}-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4} \int \exp \left(-\frac{\left(\boldsymbol{x}-\frac{\boldsymbol{a}_{1}+\boldsymbol{a}_{2}}{2}\right)^{2}}{\sigma^{2}}\right) \mathrm{d} \boldsymbol{x}\right\}
\end{gathered}
$$

We'vd computed these integrals in class, so now it becomes a matter of using known integrals. The second integral is straightforward. It is the equivalent of n such one-dimensional integrals, where n is the number of dimension in the problem. Computing the first integral, however, is equivalent to computing one integral like the second-moment integral and $n-1$ integrals of the zeroth-moment. Therefore,

$$
\begin{aligned}
& \mathcal{I}_{n}==\frac{1}{\sigma^{4}} \exp \left(-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4 \sigma^{2}}\right)\left\{\frac{n \pi^{n / 2} \sigma^{n+2}}{2}-\frac{\pi^{n / 2}}{4}\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2} \sigma^{n}\right\} \\
& \mathcal{I}_{n}=\exp \left(-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4 \sigma^{2}}\right)\left\{\frac{n \pi^{n / 2} \sigma^{n-2}}{2}-\frac{\pi^{n / 2}}{4}\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2} \sigma^{n-4}\right\}
\end{aligned}
$$

For one-dimension

$$
\mathcal{I}_{1}=\frac{\sqrt{\pi}}{2} \exp \left(-\frac{\left(a_{1}-a_{2}\right)^{2}}{4 \sigma^{2}}\right)\left\{\frac{1}{\sigma}-\frac{\left(a_{1}-a_{2}\right)^{2}}{2 \sigma^{3}}\right\}
$$

$$
\mathcal{I}_{2}=\frac{\pi}{2} \exp \left(-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4 \sigma^{2}}\right)\left\{2-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{2 \sigma^{2}}\right\}
$$

For three-dimensions,

And so on.

$$
\mathcal{I}_{3}=\frac{\pi^{3 / 2}}{2} \exp \left(-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{4 \sigma^{2}}\right)\left\{3 \sigma-\frac{\left(\boldsymbol{a}_{1}-\boldsymbol{a}_{2}\right)^{2}}{2 \sigma}\right\}
$$

2.b. The total probability of transitioning from O to B can be found by summing over paths:

$$
\operatorname{Pr}(O \rightarrow B)=\frac{1}{4} \times \frac{1}{3}+\frac{1}{4} \times \frac{1}{3}+\frac{1}{4} \times\left(\frac{1}{4}+\frac{1}{4} \times 1\right)=\frac{7}{24}
$$

c. It is impossible to transition from O to B in a single step; there are no such paths.

Three of the paths allow a transition from O to B, with probability

$$
\frac{1}{4} \times \frac{1}{3}+\frac{1}{4} \times \frac{1}{3}+\frac{1}{4} \times \frac{1}{4}=\frac{11}{48}
$$

One of the paths results in transition from O to B, with probability $1 / 16$.
There are no paths that result in transition from O to B in three or more steps.
d. The transition matrix is given by

$$
M=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The square of the transition matrix expresses the number of ways that one can transition from O to B in two steps.

$$
M^{2}=\left(\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

g. The matrix $(I-M)^{-1}=I+M+M^{2}+\cdots$ and gives the total number of ways to transition between two states on the off-diagonal elements. In this case, this is equal to

$$
(I-M)^{-1}=\left(\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 4 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

h. The generating function for the transition from O to B is given by

$$
f(t)=3 t^{2}+t^{3}
$$

3. We repeat the above problem with the probability matrix:

$$
P=\left(\begin{array}{ccccccc}
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The probability of transitioning from one state to another in two steps is given by the matrix P^{2}.

$$
P^{2}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & \frac{1}{16} & \frac{11}{48} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Again the total probability of transitioning between two states, in any number of steps is given by the off-diagonal elements of the matrix $(I-P)^{-1}$.

$$
(I-P)^{-1}=\left(\begin{array}{ccccccc}
1 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{16} & \frac{7}{24} \\
0 & 1 & 0 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

And the generating function for the transition between from state O to B is given by

$$
f(t)=\frac{11}{48} t^{2}+\frac{1}{16} t^{3}
$$

4. Adding the loop changes the matrix in two places, but drastically changes the solution to the problem.

$$
P=\left(\begin{array}{ccccccc}
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{3} & 0 & 0 & 0 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Finding the matrix $(I-t P)^{-1}$, reveals that the generating function for the transition from O to B is

$$
\begin{gathered}
f(t)=\frac{11 t^{2}+t^{3}}{48-t^{3}}=\frac{\frac{11}{48} t^{2}+\frac{1}{48} t^{3}}{1-\frac{1}{48} t^{3}} \\
f(t)=\frac{11}{48} t^{2}+\frac{1}{48} t^{3}+\frac{1}{48} t^{3}\left(\frac{11}{48} t^{2}+\frac{1}{48} t^{3}\right)+\frac{1}{2304} t^{6}\left(\frac{11}{48} t^{2}+\frac{1}{48} t^{3}\right)+\cdots
\end{gathered}
$$

The probability of passing through the loop is $\frac{1}{48}$ and requires three steps to complete. Once the process returns to O, the process repeats itself the same as before. Therefore, each completion of the loop introduces a factor of $\frac{1}{48} t^{3}$.
5. The contour plot appears below.

