Homework #4
January 29, 2016
Dustin Jay Hill

1. Let fl(a:):exp(f(m;—:;y) and fz(m):exp(*(m;—:zw)
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We’vd computed these integrals in class, so now it becomes a matter of using known integrals. The second integral is straightforward. It is the equivalent
of n such one-dimensional integrals, where n is the number of dimension in the problem. Computing the first integral, however, is equivalent to computing
one integral like the second-moment integral and n — 1 integrals of the zeroth-moment. Therefore,
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For one-dimension

For two-dimensions,



For three-dimensions,
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And so on.
2.b. The total probability of transitioning from O to B can be found by summing over paths:
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c. It is impossible to transition from O to B in a single step; there are no such paths.

Three of the paths allow a transition from O to B, with probability

One of the paths results in transition from O to B, with probability 1/16.
There are no paths that result in transition from O to B in three or more steps.

d. The transition matrix is given by
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The square of the transition matrix expresses the number of ways that one can transition from O to B in two steps.
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g. The matrix (I — M)~'=I+ M + M?+ --- and gives the total number of ways to transition between two states on the off-diagonal elements. In this
case, this is equal to
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h. The generating function for the transition from O to B is given by
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3. We repeat the above problem with the probability matrix:
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The probability of transitioning from one state to another in two steps is given by the matrix P2.
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Again the total probability of transitioning between two states, in any number of steps is given by the off-diagonal elements of the matrix (I — P)~L.
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And the generating function for the transition between from state O to B is given by

4. Adding the loop changes the matrix in two places, but drastically changes the solution to the problem.
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Finding the matrix (I —¢ P)~!, reveals that the generating function for the transition from O to B is
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The probability of passing through the loop is % and requires three steps to complete. Once the process returns to O, the process repeats itself the same
as before. Therefore, each completion of the loop introduces a factor of 4—18t3.

5. The contour plot appears below.
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