Mathematical Physics II

PHYS 502

Problem Set \# 4
 Distributed January 22, 2016
 Due January 29, 2016

1 (again). $f_{1}(\mathbf{x})=e^{-\left(\mathbf{x}-\mathbf{a}_{1}\right)^{2} / 2 \sigma^{2}}, f_{2}(\mathbf{x})=e^{-\left(\mathbf{x}-\mathbf{a}_{2}\right)^{2} / 2 \sigma^{2}}$. Evaluate

$$
\int \nabla f_{1}(\mathbf{x}) \cdot \nabla f_{2}(\mathbf{x}) d \mathbf{x}
$$

2. Network Transitions: Look at Fig. 16.5 pg. 624 in Hobson and Riley. Use the transition probabilities as given.
a. One of the important nodes is unmarked. Identify it and label it A_{5}.
b. Compute the probability of the transition $O \rightarrow B$ in: 1 step; 2 steps; 3 steps; 4 or more steps. Use Feynmanesque logic.
c. What is the probability of the transition $O \rightarrow B$.
d. Represent the transitions in this network by a Markov transiton matrix. This matrix is "binary": it has only 0 and 1 as matrix elements: 0 if a one-step transition does not occur and 1 if it does occur with nonzero probability. Call this matrix M. It should be a 7×7 matrix with rows and columns $1-1$ with the nodes $O, A_{1}-A_{5}, B$. The matrix element $M_{i j}=0$ if $i \rightarrow j$ does not occur in one step; $M_{i j}=1$ if $i \rightarrow j$ can occur in one step.
e. Show that the transition $i \rightarrow j$ can occur in 2 steps if $\sum_{k} M_{i k} M_{k j}=n>$ 0 . Convince me that n is the number of ways you can get from i to j in two steps.
f. Generalize.
g. Show that the number of ways of getting from i to j in any number of steps is $M_{i j}+M_{i j}^{2}+M_{i j}^{3}+M_{i j}^{4}+\cdots=\left(\frac{I}{I-M}\right)_{i j}$. Compute this matrix for this example.
h. It is easier to keep count of the number of ways to get from i to j by introducing a generating function, for example $t M_{i j}+t^{2} M_{i j}^{2}+t^{3} M_{i j}^{3}+t^{4} M_{i j}^{4}+$ $\cdots=\frac{I}{I-t M}$. Then in the Taylor expansion of the rhs the power of t in any matrix element indicates the number of steps and its coefficient is the number of ways to get from i to j. Compute the matrix element of the generating function for the transition $O \rightarrow B$.
i. Would Feynman agree with you?
3. Network Probabilities: Repeat the problem above, but replace the Markov Transition matrix M by the Markov Probability matrix P. This is also a 7×7 matrix describing one-step transitions, but now $P_{i j}$ is the probability of the transition from i to j in one step. Keep in mind that you will need to interpret statements like "..indicates the number of steps and its coefficient is the number of ways..." as "..indicates the number of steps and its coefficient is the probability...". Where necessary, make these new interpretations explicit.
4. Loops: Modify the network by connection node A_{5} to O and assuming $P_{5 O}=1 / 3$ and $P_{5 B}=1 / 3$. The matrix element $\left(\frac{I}{I_{7}-t P}\right)_{O B}$ is now a fraction involving the variable t. Find this fraction. Do a Taylor series expansion of this fraction. Interpret your results. Does Feynman smile on you?
5. Quadratic Functions: Make a contour plot of the potential

$$
V(x, y)=\frac{1}{2}\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

