Mathematical Physics II

PHYS 502

Solutions to Problem Set \# 3

1a. Estimate the scaling exponent for the biological data shown in Fig. 1.
1b. Estimate the scaling exponent for the astrophysical data shown in Fig. 2.

Solution: For the first figure (Galileo scaling), for both curves the "rise over run" for the exponents is $2 / 6$, so the scaling exponent is $\frac{1}{3}$.

For the second figure the curve has a "knee" or a break at about $1 E+07$. For the dwarfs, rise/run $\simeq \frac{1}{2} / 3$ so the scaling exponent is about $\frac{1}{6}$. Above the knee we have points 10^{3} at about $1 E+13$ and 10^{1} at about $1 E+06$, so the scaling exponent is about $\frac{2}{7}$.
2. $f_{1}(\mathbf{x})=e^{-\left(\mathbf{x}-\mathbf{a}_{1}\right)^{2} / 2 \sigma^{2}}, f_{2}(\mathbf{x})=e^{-\left(\mathbf{x}-\mathbf{a}_{2}\right)^{2} / 2 \sigma^{2}}$. Evaluate

$$
\int f_{1}(\mathbf{x}) V(\mathbf{x}) f_{2}(\mathbf{x}) d \mathbf{x}
$$

and approximate the result in terms of the potential and its first and second derivative evaluated as some cleverly chosen point.

Solution: From class notes: $\int_{-\infty}^{+\infty} e^{-a x^{2}} d x=\sqrt{\frac{\pi}{a}}$ and $\int_{-\infty}^{+\infty} x^{2} e^{-a x^{2}} d x=$ $\frac{1}{2 a} \sqrt{\frac{\pi}{a}}$. From previous homework, $f_{1} f_{2}=e^{-\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)^{2} / \sigma^{2}} e^{-\left(\mathbf{x}-\mathbf{a}_{\mathrm{av}}\right)^{2} / \sigma^{2}}$. This is a gaussian centered at $\mathbf{a}_{\mathrm{av}}=\left(\mathbf{a}_{1}+\mathbf{a}_{\mathbf{2}}\right) / \mathbf{2}$ with a prefactor that decreases exponentially with distance between $\mathbf{a}_{\mathbf{1}}$ and $\mathbf{a}_{\mathbf{2}}$. Taylor expand the potential V around \mathbf{a}_{av} to second order: $V(\mathbf{x})=V\left(\mathbf{a}_{\mathrm{av}}\right)+\Delta x^{i} V_{i}+\frac{1}{2} \Delta x^{i} \Delta x^{j} V_{i j}\left(\mathbf{a}_{\mathrm{av}}\right)+h . o . t .$. The integral of the first (zeroth order) term is $e^{-\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)^{2} / \sigma^{2}} V\left(\mathbf{a}_{\text {av }}\right) \pi \sigma^{2}$. The integral of the second term is zero, "by symmetry". The integral of the third term is $e^{-\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)^{2} / \sigma^{2}} V_{i j}\left(\mathbf{a}_{\mathrm{av}}\right) \delta^{i j} \sqrt{\pi \sigma^{2}} \times \frac{1}{2} \sigma^{2} \sqrt{\pi \sigma^{2}}$. The last term can be cleaned up, as $\delta^{i j} V_{i j}=V_{x x}+V_{y y}=\nabla^{2} V$. The result is $e^{-\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right)^{2} / \sigma^{2}} \pi \sigma^{2}\left(V\left(\mathbf{a}_{\mathrm{av}}\right)+\frac{1}{2} \sigma^{2} \nabla^{2} V\left(\mathbf{a}_{\mathrm{av}}\right)\right)$.
3. Convince me that you can approximate the first and second derivatives of a function on a line, $f(x)$, by evaluating the function at discrete points along the line spaced a distance Δ apart, and that

$$
\begin{aligned}
\left.\frac{d f}{d x}\right|_{x_{i}} & \simeq \frac{f\left(x_{i}+\Delta\right)-f\left(x_{i}-\Delta\right)}{2 \Delta} \\
\left.\frac{d^{2} f}{d x}\right|_{x_{i}} & \simeq \frac{f\left(x_{i}+\Delta\right)-2 f\left(x_{i}\right)+f\left(x_{i}-\Delta\right)}{\Delta^{2}}
\end{aligned}
$$

For other numerical approximations of derivatives, including ∇ and ∇^{2}, see the pictures in Chapter 25 of Abramowitz and Stegun.

Solution: The calculus definitions of first and second derivates are
$\left.\frac{d f}{d x}\right|_{x}=\left.\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-f(x-\delta)}{2 \delta} \quad \frac{d^{2} f}{d x^{2}}\right|_{x}=\lim _{\delta \rightarrow 0} \frac{f(x+\delta)-2 f(x)+f(x-\delta)}{\delta^{2}}$
As Physicists we drive δ to small nonzero values and 'hope for the best'. Even better is to evaluate these ratios for several values of δ, fit a curve through these values, and evaluate the fit at $\delta=0$.
4. Can this integral be evaluated analytically? If so, what is it?

$$
f=2 z e^{z^{2}} \log z+\frac{e^{z^{2}}}{z}+\frac{\log z-2}{\left[(\log z)^{2}+z\right]^{2}}+\frac{(2 / z) \log z+1 / z+1}{(\log z)^{2}+z}
$$

Solution:

$$
e^{z^{2}} \log z-\frac{\log z}{(\log z)^{2}+z}+\log \left[(\log z)^{2}+z\right]
$$

Can this integral be evaluated in closed form:
Solution: Maple (or other) echoes out the input. This is the signal that the integral cannot be evaluated in closed form.

$$
f=2 z e^{z^{2}} \log z+\frac{e^{z^{2}}}{z}+\frac{\log z+2}{\left[(\log z)^{2}+z\right]^{2}}+\frac{(2 / z) \log z+1 / z+1}{(\log z)^{2}+z}
$$

Figure 1: (Two data sets that were used to test Galilean scaling in biological creatures.

A comparison of the observed rotation speeds in km / s (black dots) with the predictions of MoND (dotted) and MiHsC (dashed) for galaxies and galaxy clusters of increasing baryonic mass (in Solar masses). Credit: M.E. McCulloch

Figure 2: (Several data sets used to discern information about "dark matter".

