Mathematical Physics II

PHYS 502

Solution to Problem Set \# 1

1. Here is a 3×2 matrix:
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$

Diagonalize it.

Solution: The Singular Value Decomposition (SVD) was discovered about a dozen different times in about a dozen different areas of research. It says

$$
T_{i r}=\sum_{\alpha=1, \min (p, q)} u(i, \alpha) \lambda_{\alpha} v(r, \alpha) \quad 1 \leq i \leq p, \quad 1 \leq r \leq q
$$

Here $u(i, \alpha)$ is the $\mathrm{i}^{\text {th }}$ component of the α eigenvector of the $p \times p$ real symmetric matrix $M 3_{i j}=T T^{t}=T_{i r} T_{j r}$ whose nonzero eigenvalues are λ_{α}^{2} and $v(r, \alpha)$ is the $\mathrm{r}^{\text {th }}$ component of the α eigenvector of the real symmetric $q \times q$ matrix $M 2_{r s}=T^{t} T=T_{i r} T_{i s}$ whose nonzero eigenvalues are the same λ_{α}^{2} :

$$
M 3=T T^{t}=\left[\begin{array}{ccc}
5 & 11 & 17 \\
11 & 25 & 39 \\
17 & 39 & 61
\end{array}\right] \quad M 2=T^{t} T=\left[\begin{array}{ll}
35 & 44 \\
44 & 56
\end{array}\right]
$$

The eigenvalues of $M 3$ are $\lambda_{\alpha}^{2}=90.735 \ldots, 0.264 \ldots, 0$ and of $M 2$ are $\lambda_{\alpha}^{2}=$ $90.735 \ldots, 0.264 \ldots$. It is not a clever idea to diagonalize both matrices. There are two reasons. (1) Often one of p, q is much larger than the other. (2) There are phase relations among the eigenvectors, and separate diagonalization destroys these phase relations. It is therefore useful to compute the eigenvectors $u(i, \alpha)$ by taking the inner product of T with the eigenvectors of the smaller matrix:

$$
T_{i, r} v(r, \beta=1)=\left\{\sum_{\alpha} u(i, \alpha) \lambda_{\alpha} v(r, \alpha)\right\} v(r, 1)=\lambda_{1} u(i, 1)
$$

$$
T_{i, r} v(r, \beta=2)=\left\{\sum_{\alpha} u(i, \alpha) \lambda_{\alpha} v(r, \alpha)\right\} v(r, 2)=\lambda_{2} u(i, 2)
$$

For the example at hand

$$
\lambda_{1} u(i, 1)=\left[\begin{array}{l}
2.187 \\
4.993 \\
7.799
\end{array}\right] \quad \lambda_{2} u(i, 2)=\left[\begin{array}{r}
-0.454 \\
-0.124 \\
0.206
\end{array}\right]
$$

with $\lambda_{1}=\sqrt{\lambda_{1}^{2}}=9.525$ and $\lambda_{2}=\sqrt{\lambda_{2}^{2}}=0.514$.
Creeping up on a solution we construct $u(i, 1) \lambda_{1} v(r, 1)$ and $u(i, 2) \lambda_{2} v(r, 2)$:
$u(i, 1) \lambda_{1} v(r, 1)=\left[\begin{array}{ll}1.353 & 1.714 \\ 3.090 & 3.914 \\ 4.827 & 6.114\end{array}\right] \quad u(i, 2) \lambda_{2} v(r, 2)=\left[\begin{array}{rr}-0.355 & 0.281 \\ -0.097 & 0.076 \\ 0.161 & -0.127\end{array}\right]$
Note that the sum of these two matrices is T up to roundoff error, and the difference gets smaller as more and more decimal digits are retained, and goes to zero eventually.

Note also that only the first matrix $u(i, 1) \lambda_{1} v(r, 1)$ is already a good approximation to T. This is because the first eigenvalue is so much larger than the second. Quantitatively, this first matrix contains $\frac{90.735}{90.735+0.264}=0.997=99.7 \%$ of the information contained in T, estimated in a least sqaures sense.

