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Introducing fluid dynamics using dimensional analysis
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Many aspects of fluid dynamics can be introduced using dimensional analysis, combined with

some basic physical principles. This approach is concise and allows exploration of both the laminar

and turbulent limits—including important phenomena that are not normally dealt with when fluid

dynamics is first introduced as a precise mathematical discipline. In this paper, we use dimensional

analysis to understand drag forces on bodies, flow speeds through tubes, and lift forces.
VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4813064]

I. INTRODUCTION

In this article, we describe a method, using dimensional
analysis, for introducing fluid dynamics to undergraduate
physics students. Dimensional analysis, which emphasizes
thinking more than memorizing, is not commonly used in in-
troductory textbooks1–6 when discussing fluids, even though
such as approach facilitates a clearer understanding of the
effects of turbulence when considering drag and lift forces,
and flow resistance in tubes.

Fluid dynamics is a huge and difficult subject, with a long
history, not only in the field of physics but also in the fields
of mathematics and engineering. In spite of this, a complete
understanding of turbulence remains an unsolved problem,
as several famous physicists have noted.7

Turbulence is common in daily life. The transition from
laminar to turbulent flow is seen, for example, in smoke ris-
ing from a cigarette. Turbulence affects the air resistance act-
ing on a bicyclist8 and on falling objects such as the coffee
filters or muffin forms often used in physics teaching.9 In
these cases, the air resistance is proportional to the square of
the object’s velocity, and this quadratic dependence on ve-
locity, in incompressible fluids, is connected to turbulence.
Nevertheless, in physics instruction drag forces are often
assumed to be linear in the velocity (as is the case for lami-
nar flow) rather than quadratic, even though the latter is
more commonly encountered.

Within the paradigm of fluid dynamics as an exact mathe-
matical discipline, drag forces proportional to velocity
(Stokes’ law) and other phenomena (e.g., Poiseuille’s law for
the flow speed through tubes) in the laminar flow regime can
be derived. But due to the nonlinearity of the fundamental
equations, this approach does not give results in the turbulent
limit. In such situations dimensional analysis is especially
useful, in that much of the behavior can be revealed without
actually solving the nonlinear equations.

In Sec. II, we give a brief introduction to dimensional
analysis, meant for readers unfamiliar with the method. In
Secs. III and IV, we estimate drag forces on bodies and flow
speeds through tubes in both the turbulent and laminar limits
using dimensional analysis combined with work/energy-flow
arguments. Instead of comparing the relative strengths of the
terms (with dimensions of force) in the Navier-Stokes’ equa-
tion, as is usually done in introductory textbooks on fluid dy-
namics, we ask whether the work done by driving forces is
converted primarily into thermal energy or primarily into
macroscopic kinetic energy. In Sec. V, we calculate lift
forces in both the turbulent and laminar limits using dimen-
sional analysis combined with force/momentum-flow

arguments. In Sec. VI, we discuss how the usual mathemati-
cal way of presenting fluid dynamics has overshadowed the
more intuitive approach of Secs. III–V. Finally, in Sec. VII,
the pros and cons of the approach are discussed.

II. DIMENSIONAL ANALYSIS

In recognition of the centenary of its introduction, we will
use the Bohr model of the hydrogen atom as an example to
introduce the method of dimensional analysis.

When presenting his model in 1913, Niels Bohr gave a
dimensional analysis argument in the introduction of his arti-
cle.10 The classical mechanical problem of calculating the
orbits of the electron around the proton involves only two
input variables: the mass of the electron and the constant
kC ¼ e2=4p�0 that determines the strength of the force
between the two particles. But these two input variables can-
not be combined into a physical quantity with dimensions of
length, needed to explain the size of the atom. On the other
hand, when Planck’s constant is introduced as a third vari-
able, dimensional analysis gives a characteristic length—the
Bohr radius—that agrees with the known order of magnitude
of the size of the atom. Let us see how.

We stress that the symbols used in physics formulas refer
to physical quantities—not merely to the numerical values of
these quantities in a particular system of units. For example,
if we write d1 ¼ 2d2, to indicate that one distance is twice as
large as another, we are making a statement that is independ-
ent of the particular units and numbers used to specify d1 and
d2.

We also note that it is not possible to add quantities of dif-
ferent dimension—for example, a length and a mass. On the
other hand, quantities with different dimensions can be mul-
tiplied and divided to obtain quantities with new dimensions
(for example, when we calculate a density from a mass di-
vided by a length cubed). In general, if a physical formula
expresses some output quantity Q1 in terms of several input
quantities Q2, Q3,…, then this formula must take the form

Q1 ¼ g � Qa
2 � Q

b
3 � Q

c
4…; (1)

where the powers a, b, c,… yield the correct dimensions for
Q1 and the dimensionless factor g can be either a pure num-
ber or a function of dimensionless power-law combinations
of Q2, Q3, …, if such dimensionless combinations exist.11

Returning to the Bohr atom, we denote the Bohr radius a0,
the mass of the electron me, and write the Coulomb force
between the electron and the proton as kC=r2. We will use
square brackets to denote the dimensions of a quantity, and
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the symbols L, T, and M to denote the fundamental mechani-
cal dimensions length, time, and mass, respectively. We can
then write ½a0� ¼ L; ½me� ¼ M, and ½kC� ¼ M � L3 � T�2 (note
that the final expression is equivalent to force times L2).

Now suppose that a0 were a function of only me and kC.
Then, following the form of Eq. (1), we could write

a0 ¼ g � ðmeÞa � ðkCÞb (2)

for some a and b. Taking the dimensions of both sides of this
equation gives

L ¼ Ma � ðM � L3 � T�2Þb ¼ Maþb � L3b � T�2b: (3)

Since none of the fundamental dimensions L, T, and M can
be written in terms of the others, the powers of each dimen-
sion must match up separately between the two sides. But
this is impossible—matching powers of L implies b ¼ 1=3,
while matching powers of T implies b ¼ 0.

Bohr’s dimensional analysis thus shows that classical
mechanics cannot produce a characteristic atomic length.
But including Planck’s constant (divided by 2p), which has
dimension ½�h� ¼ M � L2 � T�1, changes the situation.
Equations (2) and (3) are then replaced by

a0 ¼ g � ðmeÞa � ðkCÞb � �hc (4)

and

L ¼ Ma � ðM � L3 � T�2Þb � ðM � L2 � T�1Þc

¼ Maþbþc � L3bþ2c � T�2b�c: (5)

Equating the powers of the fundamental dimensions now
gives

M : 0 ¼ aþ bþ c;
L : 1 ¼ 3bþ 2c;
T : 0 ¼ �2b� c;

(6)

and these equations have the unique solution a ¼ �1;
b ¼ �1, and c ¼ 2. Similarly, searching for combinations of
me, kC, and �h with dimension L0T0M0 gives the unique solu-
tion a ¼ b ¼ c ¼ 0, implying that the factor g in Eq. (4) has
to be a pure number. Therefore, from dimensional reasoning
we conclude that a theory of atoms built on the input varia-
bles me, kC, and �h, independent of other assumptions, results
in a characteristic atomic length given by

a0 ¼ pure number � �h2

mekC
: (7)

This expression happens to agree with the textbook formula
for the Bohr radius if the pure number is chosen to be 1.

Dimensional analysis thus played a role in the birth of
atomic physics and quantum mechanics. Of course, the
value (in this case 1) of the pure number cannot be found
using dimensional analysis. But aside from this pure num-
ber, the Bohr radius can be found using dimensional analy-
sis without reference to a developed model or theory. Any
model or theory that uses me, kC and �h as input variables
will imply Eq. (7). Thus, it is not surprising that the cor-
rect theory (Schr€odinger’s equation) gives the same
expression.

It is not common for physicists to follow Niels Bohr and
present dimensional analysis in their formal writings. But
dimensional analysis is a powerful tool that physicists often
use before developing a more formal line of reasoning.
Solving problems using dimensional analysis is also a good
approach for teaching students how to think like a
physicist.11

III. DRAG

We now turn to fluid dynamics, and use dimensional anal-
ysis to calculate the drag force on a body moving through a
fluid. For motion through air, drag is often called air resist-
ance. But the formulas we derive below are valid for the
motion of bodies in both gases and liquids. We consider the
steady motion of a body pulled though a fluid, as sketched in
Fig. 1. The drag D is the force exerted by the fluid in the
direction opposite to the motion. If the motion is steady, the
drag has the same magnitude as the pulling force.

The first thing to do is to ask which physical quantities the
drag can depend on. The pulling force and the drag depend
on the velocity v of the body; they also depend on the shape
of the body, and on a length r characterizing the size of the
body. We further expect the drag to depend on the density q
of the fluid. And we must expect the drag to depend on the
internal “friction” or “stickiness” within the fluid, character-
ized by its viscosity g.

We might at first think that the mass or density of the
body is a relevant physical quantity, but there is no physical
mechanism for mass to affect the pulling force unless the
body is accelerated. Or we might think that the compressibil-
ity of the fluid is relevant—and in fact it is, if v is near to the
speed of sound. We therefore restrict ourselves to velocities
small compared to the speed of sound, which is equivalent to
assuming that the fluid is incompressible. This leaves us with
v, r, q, g, and dimensionless quantities characterizing the
shape of the body, as input variables for D. The formula for
D, following Eq. (1), must therefore take the form

D ¼ g � va � rb � qc � gd; (8)

with g depending on the shape of the body and possibly on
dimensionless combinations of the other variables.

We seek values of a, b, c, and d that give the same dimen-
sions on both sides of Eq. (8). To find the dimensions of g,
we imagine a plate on the top of a layer of fluid resting on a

Fig. 1. Drag force on a body pulled through a fluid. Here Fpull is the pulling

force, D the drag force, v the velocity of the body, and r a length characteriz-

ing the size of the body.
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horizontal plane. Acting on the plate with a horizontal force
causes the plate to move along with the top of the fluid layer,
while the bottom of the layer remains at rest, “stuck” to the
surface below. The greater the viscosity, the more force is
required, per unit area of the plate, to produce a given veloc-
ity gradient (change of velocity per unit height). The viscos-
ity coefficient g is therefore defined as

g ¼ force=area

dv=dz
; (9)

where z is the vertical direction. From this definition it is
straightforward to show that ½g� ¼ M � L�1 � T�1.

The dimensions of the remaining quantities in Eq. (8) are
familiar, so we can now take the dimensions of both sides of
that equation to obtain

M1 � L1 � T�2 ¼ Mcþd � Laþb�3c�d � T�a�d: (10)

Equating the powers of the base dimensions on the two sides
of the equation gives

M : 1 ¼ cþ d;
L : 1 ¼ aþ b� 3c� d;
T : �2 ¼ �a� d:

(11)

Because there are three equations and four unknowns,
dimensional analysis does not uniquely determine the for-
mula for D. However, we can use these three equations to
eliminate a, b, and c in Eq. (8), which then becomes

D ¼ g � v2�d � r2�d � q1�d � gd ¼ g � qr2v2 � g
qrv

� �d

;

(12)

in which only d and g remain to be determined. The quantity
g=qrv is dimensionless; it is the inverse of Reynolds number
Re � qrv=g.

The unknown g is either a pure number or a function of
dimensionless combinations of v, r, q, and g. If we modify
the preceding analysis to seek a dimensionless combination
of these variables, we find that the only possibilities are
ðqrv=gÞa ¼ Rea. We can therefore rewrite Eq. (12) as

D ¼ qr2v2 � f ðReÞ; (13)

where f is an unknown function of Re. This is the usual for-
mula for the drag, found in textbooks in fluid dynamics. The
function f(Re) depends on the shape of the body and can be
very complex. Much effort is invested in understanding this
function in fluid dynamics.

Here, however, we will skip the formal reasoning and con-
tinue with a more intuitive physical approach. In general,
both thermal energy and macroscopic kinetic energy are cre-
ated when a body is pulled through a fluid. But if we restrict
ourselves to either the limit where the velocity of the body is
very small, or the limit where the velocity of the body is
very large, we can be more explicit.12 Our guide is the ques-
tion: Is the work done by the pulling force converted primar-
ily into thermal energy or primarily into macroscopic kinetic
energy of the fluid?

If the velocity of the body is sufficiently small, we expect
a steady, laminar flow around the body. In the reference
frame of the body, the velocity at every location is constant

and therefore the macroscopic kinetic energy is constant.
This means that the work done by the pulling force must go
entirely into thermal energy, caused by the internal friction
in the fluid. In this limit, the drag force will therefore depend
on the viscosity of the fluid but not on its density, because
the density enters into only the macroscopic kinetic energy.

Thus, in the low-velocity limit Eq. (8) is replaced by the
simpler formula

D ¼ g � va � rb � gc; (14)

and taking the dimension of both sides gives

M1 � L1 � T�2 ¼ Mc � Laþb�c � T�a�c; (15)

so that Eqs. (11) are replaced by

M : 1 ¼ c;
L : 1 ¼ aþ b� c;
T : �2 ¼ �a� c:

(16)

These equations have the unique solution a ¼ b ¼ c ¼ 1.
Moreover, there is no combination of v, r, and g that is
dimensionless, so g is simply a number. Our formula for the
drag force in this limit therefore becomes

D ¼ pure number � grv; (17)

where the pure number depends of the shape of the body.
For a sphere of radius r, the number happens to be 6p and
Eq. (17) is known as Stokes’ law.

In the opposite limit, where the velocity is sufficiently
large, we expect a turbulent wake behind the body. When
pulling the body through the fluid, we continuously produce
new macroscopic kinetic energy in the wake. At sufficiently
high velocities, we will assume that the work done by the
pulling force is converted predominantly into macroscopic
kinetic energy in the wake. The macroscopic kinetic energy
of a fluid with a given flow pattern depends of the density of
the fluid, but not on its viscosity. Although the viscosity of
the fluid determines how the macroscopic kinetic energy in
the wake is transformed into thermal energy in the long run,
the immediate production of thermal energy in the fluid can
be neglected. In this case, we therefore expect the pulling
force (and the oppositely directed drag of equal magnitude)
to be independent of viscosity, determined only by shape, v,
r, and q. Again we now have only three input variables,
besides the dimensionless shape variables, so the dependence
of D on the three variables is determined uniquely. By an
argument entirely analogous to those given previously, we
find

D ¼ pure number � qr2v2: (18)

This formula describes the air resistance acting on a bicy-
clist,8 a moving automobile,8 and the falling coffee filters
found in school physics experiments.

Comparing Eq. (17), valid for small velocities, with Eq.
(13), valid in general, we conclude that f ðReÞ is proportional
to ðReÞ�1

at small velocities. Similarly, by comparing Eq.
(18), valid for large velocities, with Eq. (13), we find
f(Re)¼ constant. Since f(Re) is a function of Re, and not of
v, we should rather state that f ðReÞ / ðReÞ�1

at small values
of Re, and that f(Re) is independent of Re at large values of
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Re. In the reasoning above r, g, and q were assumed constant
and only v varied. But the more general statements are that
Eq. (17) is valid in the limit of small Reynolds numbers, and
Eq. (18) is valid in the limit of large Reynolds numbers.
How small or large the Reynolds numbers should be in order
to make Eqs. (17) and (18) reliable depends on the shape of
the body. In the cases of bicycling, car driving, and falling
coffee filters, Eq. (18) is valid and D is thus independent of
Re. This means that the assumption of D being independent
of g is justified in these cases. In general, at a given Re, Eq.
(18) is more valid for not-very-streamlined bodies, where the
cross section of the wake is determined by the cross section
of the body, not by the detailed streaming of the fluid around
the body.

IV. FLOW

Using the same methods as above, we now treat fluid flow
through a tube in the two limits. We imagine a fluid being
driven through a tube by a pressure difference between its
ends, as sketched in Fig. 2. As in the case of drag, we focus
on whether thermal energy or macroscopic kinetic energy is
created in the tube as the fluid is driven through it.

Our goal is to find a formula for the volume of fluid per
unit time flowing through the tube, Q. The flow rate Q must
depend on the shape and the characteristic length r of the
cross section of the tube. It depends on the pressure differ-
ence between the ends of the tube DP and on the length of
the tube ‘ in the combination DP=‘ because the flow of fluid
will be unaltered when doubling both DP and ‘. In general,
we expect Q to depend on both the viscosity g and the den-
sity q of the fluid. As in the preceding section, this leaves
one input variable too many to determine the desired formula
by dimensional analysis. Thus, we will restrict ourselves to
the two limits where the Reynolds number is either very
small or very large. The relevant velocity entering the esti-
mate of the Reynolds number (Re ¼ qrv=g) is the average
flow velocity, given by Q divided by the cross-sectional area
of the tube.

Consider first the limit where Re is small. Here we expect
a laminar and steady flow through the tube. The macroscopic
kinetic energy of the fluid is thus the same at the end as at
the beginning of the tube. This means that the work done in
pressing the fluid through the tube goes entirely into heating
the fluid. This heating depends on the fluid’s viscosity but
not on its density. We thus expect Q to be determined by r,
the cross section shape, DP=‘, and g. Because ½Q� ¼ L3 � T�1

and ½DP=‘� ¼ M � L�2 � T�2, the only combination of these
quantities that has the correct dimensions is ðDP=‘Þ � r4=g.
No dimensionless quantities can be made from DP=‘, r, and
g, so the formula for Q at small Reynolds numbers is

Q ¼ pure number � DP

‘

� �
� r

4

g
: (19)

Inserting p=8 for the number gives Poiseuille’s law for flow
through a tube with a circular cross section of radius r.

Next consider the limit where the Reynolds number is
large. Here, we expect that the interaction with the walls of
the tube causes turbulent motion of the fluid, with increasing
velocity components perpendicular to the stream direction as
the fluid moves through the tube. The fluid thus leaves the
tube with larger macroscopic kinetic energy per unit volume
than when it entered. The work done by the pressure differ-
ence forcing the fluid through the tube is converted into mac-
roscopic kinetic energy in the fluid, which depends on the
fluid’s density q, but not on its viscosity. In this limit, we
therefore expect the flow rate Q to be determined by r, cross
section shape, DP=‘, and q. Dimensional analysis for the
desired formula for Q then results in

Q ¼ pure number � DP

‘
� r

5

q

 !1=2

: (20)

This formula applies for tubes with not-too-smooth internal
surfaces, e.g., cast-iron tubes. The formula is seldom derived
in physics textbooks; I only found it reported as an empirical
result in specialized textbooks in fluid mechanics.13

Equation (20) has an interesting consequence. Imagine
two containers partly filled with the same fluid connected to
each other by a tube at their bottoms. Suppose the surfaces
of the fluid in the two containers are initially at different
heights, thereafter gradually reaching the same level due to
flow, driven by gravity, through the tube. It follows from Eq.
(20) that the way this takes place, at large Reynolds numbers,
is independent of the fluid: Q is independent of q whenever
DP is proportional to q, as in this case for fluids in a gravita-
tional field. Thus, the way potential energy is converted into
turbulent macroscopic kinetic energy does not depend on
density, just as the conversion of potential energy into ki-
netic energy during free fall does not depend on mass.

Summarizing, we have derived formulas for both drag and
flow, in both the turbulent and the laminar limits. This was
accomplished using dimensional analysis combined with
physical reasoning about the transformation of work into pri-
marily either thermal energy or macroscopic kinetic energy.
In Sec. V, we treat lift forces in general, using dimensional
analysis combined with physical reasoning about the flow of
momentum in the fluid passing a body.

V. LIFT

Why can dust and sand grains be lifted by the wind, given
the fact that they afterward fall to the ground again and thus
are not able to float? What is the minimal wind velocity
needed to lift the grains from the ground? Let us try to an-
swer this question as an illustration of fluid lift problems in
general.

Figure 3 suggests that the lift force L on the grain, due to
its interaction with the air passing by the grain, derives from
the change of the direction of motion of the air during the
passage. According to Newton’s third law, the grain must
cause a force on the air in the opposite direction and of the
same magnitude as the lift force exerted by the air on the
grain. According to Newton’s second law, an unbalanced

Fig. 2. Fluid flow through a tube due to a pressure difference. Here Q is the

volume of fluid driven through the tube per unit time, r a characteristic cross

sectional width, ‘ the length of the tube, and P the pressure.
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force on the air is accompanied by an equal change in its mo-
mentum per unit time. The lift L can thus be evaluated by
calculating the vertical momentum change per unit time of
the air passing the particle.

Unlike the drag force, the lift force is not intuitively
related to friction and the viscosity of the air. We assume
that the streaming pattern around the grain is determined by
the geometry, the velocity of the air, and the density of the
air. Furthermore, we assume that the magnitude of the vis-
cosity influences only the thickness of a thin boundary layer,
caused by the condition of zero velocity at the boundary. In
this case, the vertical momentum change of the air per unit
time depends only on the shape of the grain, the size of the
grain r, the density of air qair, and the velocity of the wind v.
Therefore the lift force, by dimensional analysis, must be

L ¼ pure number � qair � r2v2; (21)

where the dimensionless number depends on the shape of the
grain.

The grains are lifted from the ground when the lift force
exceeds the gravitational force minus the buoyant force. The
critical wind velocity vcrit for sandstorms is therefore given by

qairr
2v2

crit ¼ pure number � ðqsand � qairÞr3g (22)

or

vcrit ¼ pure number �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rg

qsand

qair

� 1

� �s
; (23)

where qsand is the density of sand and g is the strength of the
gravitational field. The static buoyant force is included so
that Eq. (23) also covers phenomena such as streaming water
lifting sediments in rivers and the sea, where qwater cannot be
neglected compared to qsand. Equation (23) is found in the
literature on dynamics of sand, wind, and barchans.14

After being lifted, the grain has a symmetric stream pat-
tern around it, with no resulting vertical momentum transfer
between it and the air. The grain will thus fall to the ground
again because of the absence of a lift force.

It is worth emphasizing that we assumed neither laminar
nor turbulent flow when deriving Eq. (21). Contrary to the
expressions for drag and flow, the same formula for lift
applies in both the low-velocity and high-velocity limits.

VI. MATHEMATICS OVERSHADOWING

PHYSICAL INTUITION

The discipline of fluid dynamics has a long and impressive
history. The master’s thesis of Werner Heisenberg in 1923,

at the Institute of Theoretical Physics in Munich, was in
fluid dynamics with Arnold Sommerfeld as his supervisor.
Fluid dynamics was considered an important part of theo-
retical physics in Germany at that time. In England the
subject was studied in departments of applied mathematics.
Whether fluid dynamics was characterized as theoretical
physics or applied mathematics, it was approached as an
exact mathematical discipline. Thus the first edition from
1879 of Horace Lamb’s classical book about hydrodynam-
ics15 was entitled Treatise on the Mathematical Theory of
the Motion of Fluids. It is a highly mathematical book,
even though it was renamed Hydrodynamics in later
editions.

In The Feynman Lectures on Physics, Richard P.
Feynman16 divides fluid dynamics into “The Flow of Dry
Water” and “The Flow of Wet Water.” Dry water is his
name for ideal fluids with no viscosity; wet water is the
name for real fluids with viscosity. According to Feynman,
“John von Neumann was well aware of the tremendous dif-
ference between what happens when you do not have the vis-
cous terms and when you do, and he was also aware that,
during most of the development of hydrodynamics until
about 1900, almost the main interest was in solving beautiful
mathematical problems with this approximation which had
almost nothing to do with real fluids. He characterized the
theorist who made such analyses as a man who studied ‘dry
water.’” The term dry water is thus originally due to von
Neumann.

In his introduction to the flow of wet water, Feynman
nevertheless follows the tradition and puts the emphasis on
mathematical beauty. He ends up with the Navier-Stokes
equation for an incompressible fluid in the form

@X
@t
þr� ðX� uÞ ¼ 1

Re
� r2X; X ¼ r� u: (24)

Here distances, velocities, and time are measured in units of
r, v and r/v, with r being a characteristic length and v a char-
acteristic velocity of a problem considered, Re being the
Reynolds number. Equation (24) is not only a beautiful
mathematical result but also very useful because it proves
that geometrically similar problems have the same relative
velocity field u, as long as their Reynolds numbers are iden-
tical. This theorem justifies applying the results of wind-
tunnel measurements on small-scale airplanes or model-
basin results on scale-model boats to full-scale objects.

For both mathematical and engineering reasons, the tradi-
tion in fluid mechanics is therefore to consider different
physical quantities as functions of the Reynolds number. The
drag force on a body pulled through a fluid is in general
expressed in the form of Eq. (13). The function f ðReÞ is
called the drag coefficient. In most textbooks in fluid
mechanics, empirically found drag coefficients for different
shapes are presented as functions of Re. In the limit of small
Reynolds numbers—that is, the limit of small velocities if r,
q, and g are held fixed—f ðReÞ is found to be inversely pro-
portional to Re, giving Eq. (17), Stokes’ law.

In the limit of large Reynolds numbers (large velocities),
it is, however, not customary to report f ðReÞ to be a constant
function, independent of Re, as in Eq. (18). Lautrup has writ-
ten an excellent book introducing fluid dynamics within the
mathematical tradition, where he merely mentions that the
drag becomes independent of the Reynolds number at large
Reynolds numbers.17 Landau and Lifshitz argue that the drag

Fig. 3. Lift force on a sand grain. Here L is the lift force, v the velocity of

the wind, and r a characteristic length.
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coefficient for a flat disk held perpendicular to the flow direc-
tion must be independent of Re in the high velocity limit, but
this is again mentioned only as an aside.18 In general, the
focus in the literature is on Eq. (13) with its four input varia-
bles, not allowing D to be determined by dimensional analy-
sis. Authors rarely give arguments for D being independent
of viscosity at high velocities and therefore having only three
input variables and being given by dimensional analysis as
Eq. (18).19 As mentioned, this leaves many daily experiences
unexplained.

What is the explanation for the lack of attention to drag
forces proportional to v2, despite their frequent appearance
in nature and in everyday life? The best explanation I can
give is that the prevailing paradigm in fluid mechanics,
developed by mathematicians on the theoretical side, and
engineers on the practical side, expresses everything as a
function of the Reynolds number, which overshadows the
more intuitive physical arguments leading to Eq. (18).

Likewise, when dealing with flow through a pipe, the par-
adigm seems to have overshadowed the arguments leading to
Eq. (20).

VII. DISCUSSION

Of course the high-velocity limit with turbulence—or
more correctly, the limit of high Reynolds numbers—is diffi-
cult to tackle compared to the limit of small velocities and
laminar flow. Experience shows that laminar flow, and con-
sequently the expressions in Eqs. (17) and (19) for D and Q,
is always reached eventually as the velocity is reduced.
However, the expressions in Eqs. (18) and (20) for D and Q
cannot always be reached when the velocity is increased, as
we shall now see.

First consider drag. Here, Eq. (18) for a flat disk perpen-
dicular to the direction of the flow is usually reached at not-
too-large velocities, long before the assumption of incom-
pressibility breaks down at velocities comparable to the
speed of sound. But this is not the case for very streamlined
objects such as wings of birds and airplanes. What is wrong
with the argument in Sec. III, leading to Eq. (18)? The argu-
ment was that the work done by the pulling force to move a
body through a fluid, in the high-velocity limit, results
mainly in macroscopic kinetic energy in the turbulent wake
behind the body. And because the macroscopic kinetic
energy depends on q, not on g, the same must be true for the
pulling force and thus the drag.

The shortcoming of this argument is that, although only q
is needed to express the macroscopic kinetic energy in the
wake, the macroscopic kinetic energy in the wake also
depends on g because g determines how the wake is created
at the body. In a fluid without viscosity there would not be a
turbulent wake. For many sorts of bodies the influence of g
is so complicated that the drag force, over a certain range of
the Reynolds number, decreases with increasing velocity,
because of a narrowing of the wake with increasing velocity.

The circumstance where the argument leading to Eq. (18)
is justified is when the turbulent wake is determined by ge-
ometry alone, as in the case of the flat disk perpendicular to
the flow. Although viscosity in the fluid is here also needed
to create a turbulent wake, the magnitude of the viscosity
does not matter if g is larger than a certain minimum size.
An analog is a problem involving static friction. A minimal
static friction coefficient may be needed, but if this condition
is satisfied, the solution does not depend on the actual value

of the friction coefficient. As mentioned, many daily phe-
nomena act more like the flat disk than like a streamlined
body: turbulent wakes are, in essence, determined by the
cross section to the flow, not by the magnitude of the
viscosity.

For flow through a pipe, Eq. (20) has been experimen-
tally verified for rough pipes, but not for smooth pipes.13

The less rough the pipe is, the higher is the Reynolds
number that must be exceeded before the formation of tur-
bulence is independent of the viscosity, corresponding to
Eq. (20).

In the derivations of Eqs. (19) and (20), the pressure gradi-
ent was assumed constant along the pipe. The quantities DP
and ‘ appeared only in the combination DP=‘ in the dimen-
sional analysis. Due to translational symmetry, this assump-
tion is valid in the laminar limit. However, in the turbulent
limit, with increasing turbulent macroscopic kinetic energy
along the pipe, the validity of this assumption is not obvious.
In practice, it seems to be a valid approximation.13

Theoretically, an unknown function of ‘=r would have to be
substituted for the pure number in Eq. (20) if DP and ‘ are
considered independent input variables.

Explanations of lift on airplanes were discussed some time
ago in this journal by Weltner.20 He argued that an explana-
tion based on repulsive forces is easier to assimilate, more
powerful, and better related to the basic principles of
mechanics than the frequently used explanation using
Bernoulli’s equation. Furthermore, he argued that the expla-
nation based on Bernoulli’s equation has fundamental draw-
backs and is based on incomplete reasoning. Weltner argued
“that the high streaming velocity at the upper side of the
aerofoil is not the reason for the low pressure. To the con-
trary, the low pressure generated by the aerofoil is the reason
for the high streaming velocity.”

The treatment of lift in Sec. V, which relates the lift to re-
pulsive forces and not to Bernoulli’s equation, is in accord-
ance with Weltner. Equation (21) is relevant not only for the
lift on sand grains but also for the lift on airplanes, even
though an airplane wing, unlike a sand grain, is not charac-
terized by just one length. If we assume that the flow pattern
around the wing is given by geometry and is independent of
the value of the viscosity of the air, dimensional reasoning
tells us again that qair and v go into the expression for the lift
with the factor qairv

2, as in Eq. (21).
The assumption of a solely geometrically determined

flow pattern is common. It was also made by Weltner for
calculating the momentum transfer to the air from a steady
laminar flow around an airplane wing. The assumption is,
however, equally valid when the flow is turbulent. In both
the turbulent and the laminar limits, the value of viscosity
merely affects the thickness of a boundary layer, which can
be treated as a part of the body to be lifted. Between these
two limits, the ways in which vortices go into the flow
depend in general on the values of the viscosity and the
Reynolds number. Thus, the number in Eq. (21) is not
merely a constant but a function Reynolds number. It is
only in the two limits that dimensional analysis leads to a
v2 dependence of the lift.

In summary, drag, flow, and lift can all be explained quali-
tatively in an introductory physics course by relating these
phenomena to the basic principles of physics. In the case of
lift forces, the basic principles are Newton’s second and third
laws. For drag forces and flow through a pipe, the basic prin-
ciple is the work-energy theorem, with the energy produced
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becoming primarily either macroscopic kinetic energy or
thermal energy. Through the use of dimensional analysis
these explanations can be developed to give quantitative
results, both in the laminar and the turbulent limits. Because
the results in the turbulent limit, not usually presented in
physics textbooks, are in accordance with many daily experi-
ences, examining such cases via dimensional analysis pro-
vides a good introduction to fluid dynamics before drowning
in the mathematical details and intermediate-Reynolds-num-
ber phenomena relevant for more-or-less streamlined bodies
and smooth tubes.

VIII. CONCLUDING REMARKS

The mathematical and experimental complexities of the
huge subject of fluid dynamics have, in the physics teaching
tradition, led to two alternatives: either the subject is mostly
avoided or it is taught as an exact mathematical discipline. In
both cases, common phenomena such as drag forces propor-
tional to the velocity squared are not discussed.

Fortunately, the observation that mathematics can cast a
shadow over physical intuition is not common in physics.
In fact, mathematical thinking has been a characteristic as-
pect of physics for 400 years, ever since Galileo stated that
the book of nature is written in the language of mathematics.
In particle mechanics, for instance, precise mathematical
thinking may be essential.21 Nevertheless, beginning with
Maxwell the letter symbols in the mathematical equations of
physics have gradually come to be understood as represent-
ing physical quantities, not merely pure numbers, thus trans-
forming theoretical physics from being understood as
number calculus to quantity calculus.22 This development
has made dimensional analysis another important aspect of
theoretical physics.

We conclude by noting that dimensional analysis is a
powerful tool in physics; introducing fluid dynamics through
dimensional analysis, combined with basic physical princi-
ples, makes it possible in an introductory physics course to
deal with drag, flow, and lift, in both the laminar and turbu-
lent limits.
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