TOPICS in MATHEMATICAL PHYSICS

PHYS 324

Problem Set # 2 Distributed: January 16, 2014 Due: January 23, 2014

1. Eigenvalues and Eigenvectors: Here is a 5×5 matrix of a type (tridiagonal) that occurs ridiculously often in Physics:

2	-1	0	0	0]
-1	2	-1	0	0
0	-1	2	-1	0
0	0	-1	2	-1
0	0	0	-1	2

Find its eigenvalues and eigenvectors.

2. Coupled Oscillations: Two rigid walls are a distance 6L apart. Between these walls there are 5 particles, each of mass m. Each mass is connected to its two nearest neighbors by a spring of spring constant k, and the outside masses are connected to the rigid walls. The five masses are constrained to move along the x axis.

a. Draw a picture.

b. Introduce coordinates x_i to represent the displacement of the i^{th} mass from its equilibrium position.

- **c.** Write down an expression for the kinetic energy.
- d. Write down an expression for the potential energy.
- e. Write down the five Euler Lagrange equations of motion.
- **f.** Write these equations down in matrix form.
- g. Look at these matrices.

h. Did a lightbulb go off? If 'Y', write down the solution using the result of the first problem. If 'N', ask in class "What's going on?"

i. Draw a picture of the three lowest normal modes. If you don't know what 'draw a picture...' means, ask in class.