TOPICS in MATHEMATICAL PHYSICS PHYS 324

Diagnostic Exam Results Distributed: January 6, 2014

Instructions: Here are summary results of the Diagnostic Test. The numbers in parentheses are the number of students who made a serious attempt at the problem.

1. (12) Evaluate the inverse of the matrix $\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$.

2. (15) Solve the simultaneous linear equations for the values of x and y: x + 2y = 3 and 4x + 5y = 6. Verify your answer.

3. (10) Compute the eigenvalues of the matrix $\begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix}$.

4. (3) Compute the eigenvalues and eigenvectors of the real symmetric matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

5. (0) Here is an equation for simple harmonic motion: $\frac{d^2x}{dt^2} = -\omega^2 x$. What is the eigenvalue of the second derivative operator $\frac{d^2}{dt^2}$? What are the two independent eigenvectors?

6. (7) The equations of motion for a simple harmonic oscillator are $\frac{dx}{dt} = p/m$ and $\frac{dp}{dt} = -kx$. Write these two first order equations as a single second order equation in the position coordinate x.

7. (1) Find the solutions of $\frac{d^2y(x)}{dx^2} = \operatorname{cst.} y(x)$ that vanish at x = 0 and at x = L: y(0) = y(L) = 0. For each solution, find the value of cst.

8. (6) $y = \arctan(x) = \tan^{-1}(x)$ and $dy = \frac{dx}{1+x^2}$. Evaluate $\int_0^1 \arctan(x) dx$ using integration by parts.

9. (2) Evaluate the integral $\int_{-\infty}^{+\infty} \frac{x}{1+x^2} dx$ by symmetry. Evaluate the integral $\int_{-a}^{+a} x e^{-x^2} dx$ by symmetry.

10. (2) Evaluate the integral $\int_0^{+\infty} e^{-ax} \cos(bx) dx$ using the expression for $\cos(bx) = \frac{1}{2}(e^{+ibx} + e^{-ibx})$.

11. (11) $f(x, y, z) = xy^2 z^3$. $\partial f / \partial x = ?$ $\partial f / \partial y = ?$ $\partial f / \partial z = ?$ **12. (9)** $f(x, y, z) = x^2 y + y^2 z + z^2 x$. $\nabla f(x, y, z) = \text{grad}f = ?$

13. (1) $f(x, y, z) = x^2y + y^2z + z^2x$. Evaluate the volume integral of f(x, y, z) over the cube with unit edge length centered at $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$.

14. (0) $f(x, y, z) = x^2y + y^2z + z^2x$. Evaluate the volume integral of f(x, y, z) over the sphere with unit radius centered at the origin. Use symmetry.

15. (3)
$$\mathbf{F}(x, y, z) = x^2 y \mathbf{i} + y^2 z \mathbf{j} + z^2 x \mathbf{k}.$$

 $\nabla \times \mathbf{F}(x, y, z) = \operatorname{curl} \mathbf{F}(x, y, z) = ?$
 $\nabla \cdot \mathbf{F}(x, y, z) = \operatorname{div} \mathbf{F}(x, y, z) = ?$

16. (0) Show that the function $f(t) = \frac{1}{1-ae^{i\omega t}}$ is periodic: f(t+T) = f(t). Find T.

17. (0) Compute the Fourier expansion of the function $f(t) = \frac{1}{1-ae^{i\omega t}}$ (|a| < 1). Find the power spectrum of this function.

18. (0) z = 3+4i. Write the complex number z in (a) polar form $z = re^{i\theta}$; (b) in the form of a 2×2 matrix.

19. Fill in the blanks:

Ability	C	C^{++}	Python	FORTRAN	Maple	Mathematica	MatLab	Ŀ₽ŢĘX
Clueless	6	3	4	12	2	10	6	6
Maybe	5	5	2	1	9	3	4	4
Fluent	2	5	7		2		3	3

20. Where are you weak? What do you (think you) need to learn?

Linear Algebra	1	Eigenstuff	7
Vector Fields	1	Vector Operators	2
Geometry/Trigonometry		Computer aids for calculations	2
Special Functions	8	Complex Variables	3
Writing		Fourier Stuff	8
How to find webstuff	1	How to evaluate webstuff	1
Probability/Statistics	4	Other (specify)	3