Outline for Proposed Freshman Science Course

From the Big Bang to the Present

The Concordance Model of the Universe

- 1. The Big Bang
 - Bacon's Principal of Universality: The laws of the universe are the same everywhere, everytime. (Occam's Razor)
 - Cast of characters: fermions the stuff of which the universe is made; bosons the stuff that produces forces.
 - Forces
 - Energy: $mc^2, kT, \hbar\omega$
 - Particle creation and annihilation
- 2. The First Three Minutes
 - How to read graphs.
 - Volume, radius as a function of time.
 - Introduce Pressure. Pressure as a function of time.
 - Introduce Temperature. Temperature as a function of time.
 - Pressure-temperature-volume relation.
 - Freezing out of higher energy particles, one by one.
 - Quarks \rightarrow hadrons.
 - Nuclear reactions I. Production of the light nuclei and comparison with observations. Neutron decay.
- 3. The Next 300,000 Years
 - Nothing happens while the universe continues to expand and cool.
 - The equilibrium $p^+ + e^- \leftrightarrow H \leftrightarrow \frac{1}{2}H_2$ and how it depends of P, T, and the environment.
 - Decoupling of radiation.
 - The 2000K background.
 - COBE

- Motion of the earth through the Universe
- 4. Dark Ages, Renaissance, Enlightenment
 - How atomic hydrogen absorbes any radiation emitted by the first radiating objects.
 - As gas condenses to form stars, a renaissance begins, with a new source of energy coming into play.
 - Radiation from the stars starts to sweep gas out regions around the stars.
 - As these empty regions begin to overlap photons begin to travel longer and longer distances before being absorbed.
 - Finally, when most of the intergalactic gas is swpted into denser regions of space, light can travel enormous distances.
- 5. Galaxies and Globular Clusters
 - First unit of condensation galaxies.
 - Groups of galaxies. "The Finger of God"
 - Globular Clusters.
 - Types of galaxies.
 - Organization of galaxies and their clusters.
 - Dynamics of a cluster.
 - Passage through a flat disk and star formation.
 - Spiral's arms and the stuff that goes on there: star formation.
 - Interstellar/intergalactic gas/molecules.
- 6. Nucleosynthesis
 - Simple nuclear reactions: strong force, weak force.
 - Proton neutron conversion, neutrinos.
 - Alpha decay.
 - Chart of the nuclides.
 - The CNO cycle in the sun.
 - Structure of the sun.
 - Hydrogen burning regions, energy production, mass conversion and rate of mass conversion.
 - Mass loss by energy radiation, mass gain by absorption of protoplanetary stuff (estimate).

7. The Life of a Star

- Too small a mass: brown dwarfs.
- Evolution dependence on mass.
- Nuclear burning, concentric shell burning models.
- Endpoint of stellar evolution. Small mass (Sun).
- Supernova, element production where the heavies come from.
- Gloss on BBFH.
- End points of stellar evolution:
 - white dwarfs (quantum mechanics electron degeneracy),
 - neutron stars (quantum mechanics neutron degeneracy),
 - black holes.
- Starquakes.
- 8. Black Holes
 - What they are and are not (tunnels to the future).
 - Sizes of black holes: 6 size scales.
 - What you see if you fall into one.
 - Are there black holes? Experimental "observation" of black holes.
 - Tidal forces.
 - Accretion disks. Beamed radiation. More experimental stuff.
- 9. Stellar Accretion Disks Solar Accretion Disks
 - Physical geometry.
 - Temperature density profile.
 - Input element profile.
 - Changes in element profile due to temperature/pressure variations.
 - Chemical reactions and chemical profile.
 - Condensation.
 - Planet formation.
 - Composition of the planets as a function of distance from the sun.

10. Inner Planets

• Chemical composition of Mercury, Venus, Earth, Mars, Proto-asteroid belt.

- Heat due to gravitational contraction, chemical reaction, bombardment.
- Fractionation.
- Estimates of chemical profile of inner planets.
- Iron currents in Earth core source of magnetic fields,
- Oscillations of magnetic fields (experimental evidence).
- Current magnetic field variations

11. Outer Planets

- Chemical composition of Jupiter, Saturn, Uranus, Neptune, Pluto.
- Giant gas balls.
- Structure of the gas giants
- Planetary mysteries -satellites of Jupiter, rings of Jupiter, Saturn, Uranus.
- Io and volcanism.
- Asteroids and the Oort cloud.

12. ExtraSolar Planets

- What does the spectrum look like?
- How do we find them?
- How can we know all this stuff?
- Which ones might be habitable?
- What are the parent stars like?
- How do we look for life on these planets?

13. Our Sun

- The interior
- Nuclear reactions
- Turbulence and diffusion
- Looking into the interior of the sun
- Solar surface
- Magnetic fields
- Corona and its mysteries
- Solar storms and their economic impact
- Solar wind

• Past and future of the sun

The Concordance Model of the Earth

- 1. History and Evolution of the Earth
 - Motion of the solar system in the galaxy
 - Motion of Earth around sun, Moon around Earth.
 - Early history; formation and bombardment.
 - Formation of the moon. Evidence.
 - Fractionation.
 - Motion of the core. Core instability.
 - Swirling hot stuff leads to motion of the skin.
 - Plate tectonics. Ring of fire.
 - Creation and annihilation of crust.
 - Offsetting fractures.
 - Collision of plate boundaries.
 - Subduction and mountain formation.
 - Volcanism.
 - Change of the earth's atmosphere.
- 2. Evidence of Earth History
 - Great land mass movement.
 - Formation of Atlantic and Pacific from earlier oceans and land masses.
 - Magnetic field reversals.
 - Asteroid impact and the probability of impact today.
 - The great extinctions asteroids, geologically, pathogenically induced?
 - Alternation of cold and warm epochs.
 - Initiation of Ice-Age regime Evidence.
 - Milankovich cycles
 - Climate and its evolution: water and air currents, how affected b y plate tectonics
- 3. Energy

- Where does it come from where does it go?
- $\bullet~{\rm Solar}$
- Nuclear
- Tidal (gravitational)
- $\bullet~$ Geothermal
- Water cycle (graviational)
- Chemical
 - Coal
 - Oil
 - Gas
 - Bio (wood, ...)
- 4. Formation of the Atmosphere
 - Origin of atmospheres
 - Mercury
 - Venus
 - Earth
 - Mars
 - Evolution of atmospheres on Venus, Earth, Mars
 - Water and its multiple interactions. Water cycles
 - Introduction of oxygen
 - Ozone
 - Greenhouse gases
 - Effects of volcanic activity
 - Albedo and its variation

The Concordance Model of Life

1. Life

- What is life?
- Chemical elements in living organisms
- Inorganic/organic molecules
- Isomerism

- Functional groups
- $\bullet~{\rm Primitive~environment}$
- How did life form? Miller experiment; Prebiotic soup, \dots
- Limits to synthesis
- Problems: of polymerization; energy flow
- Tests of current hypotheses

2. Biological Ages of the Earth

- $\bullet~{\rm Precambrian}$
- Cambrian
- $\bullet\,$ Silurian
- Devonian
- Carboniferous
- Permian
- Triassic
- Jurassic
- Cretacious
- Tertiary
- 3. Precambrian Life
 - Earliest traces
- 4. Evolution of the Biosphere
 - What the fossiles tell us
 - $\bullet\,$ Bones and skin
 - Diversity and disparity
 - Permissivity and decimation
 - Contingency and convergence
 - Unity and diversity
 - $\bullet\,$ Cambrian explosion
- 5. Theory of Evolution
 - Mechanisms: genetic code, genetic variability
 - Mistakes and mutations

- Adaptations: adaptive strategies, natural selection
- Extinction of species.
- Evolutionary niches
- Coevolution
- Genetic distance between species
- RNA, DNA
- 6. Living Species
 - Viruses, bacteria, plant and animal kingdoms
 - Conquest of various niches: sea, land, air
 - Development of sexuality advantages and disadvantages
 - Biosphere crises causes of extinctions
 - Cellular organization of higher animals
 - Organs and their functions
 - Evolution of the mammalian tree
- 7. History and Evolution of Mankind
 - Source of origins
 - Dispersion throughout world
 - Pre historic evidence
 - Neanderthals, Homo sapiens
 - Hunters/gatherers/farmers
 - Settlements worldwide
 - Evidence of language
 - "Genetic" analysis of language
- 8. Genetics: The Chemistry of Life Central Dogma
 - DNA: Information bank. Replication of DNA
 - Transcription: DNA \rightarrow RNA, enzymes
 - RNA carries coded information to ribosomes
 - Ribosomes: read instructions for protein synthesis through translation process
 - Proteins: involved in all biological processes
 - No feedback Proteins \rightarrow RNA \rightarrow DNA

The Cell

1. Structure and Function

- Surface: Membranes and Lipids
- \bullet Vesicles
- Lysosomes
- Endoplasmic reticulum
- Golgi apparatus
- $\bullet\,$ Mitochondria
- Chloroplasts
- Ribosomes synthesis of proteins
- Nucleus

2. Functions of the Nucleus

- Genetic information transcription and editing
- DNA replication and repair
- Genetic rearrangements recombination
- Mitosis and meiosis
- 3. Chemistry of the Cell
 - Carbohydrates: saccharides
 - Proteins: amino acids, peptides
 - Lipids
 - Nucleic acids
 - Enzymes
 - Energy producers
 - Energy transporters
 - Stem cells
 - Differentiation and specialization
- 4. Energy
 - Sources
 - Flow
 - Work
 - Electron transfer

- Biosynthesis
- Information

5. Signalling Pathways

- Nerves
- Synapses and signals
- Synaptic integration and memory
- Types of nereves
- Sensory neurons
- The Brain

Evolution

- 1. History and Evolution of Life
 - Statistics and Sexual reproduction
 - Genes and chromosomes
 - Expression of genes
 - Communication among cells
 - Single cell \rightarrow many cells \rightarrow organs \rightarrow organism
 - Patterns of early development
 - $\bullet\,$ determination, differentiation, pattern formation, development

2. Immune System

- Innate
- Acquired
- Limitations of the immune system
- Attacks on the immune system

3. Energy

- Sources
- How energy is transported
- How energy is used
- ATP: glycolysis, respiration
- Transformation of light into energy
- Photosynthesis

4. Populations

- Structure of populations
- Growth of populations
- Age profiles
- Limits of population growth
- Interacting populations
- Balanced populations
- Cyclic variations in populations
- Energy flow in ecosystems
- Nutrients in ecosystems
- Human populations growth
- diseases, catastrophes

Sources

André Brahic, Michel Hoffert, André Schaaf, Marc Tardy, Sciences de la Terre et de L'universe, Paris: Vuibert, 1998.

For Physics - many books and papers in my personal collection

Karl F. Kuhn and Theo Koupelis, In Quest of the Universe, Boston: Jones and Bartlett, 2003

For Chemistry - many books in my personal collection

For Biology:

Sidney Liebes, Elisabet Sahtouris, Brian Swimme,

A Walk Through Time. From Stardust to Us: The Evolution of Life on Earth