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Abstract

Schrödinger’s equation usually cannot be solved analytically. It is even difficult to solve

numerically when the boundary conditions are anything but straightforward. When finite dif-

ference schemes come up short, finite element methods are often useful. This is a simple tutorial

for the finite element method applied to quantum mechanical problems.

1 Wave Mechanics

The very first formulation of Wave Mechanics by Schrödinger was variational:

δ

∫
{

~
2

2m
∇ψ(x)∗ · ∇ψ(x) + ψ∗(x)V (x)ψ(x) − ψ∗(x)Eψ(x)

}

d3x = 0 (1)

Here ψ(x) is some sort of wavefunction that somehow describes the properties of the particle, V (x) is
the potential the particle moves in, and E is the particle energy. The term ∇ψ(x)∗ ·∇ψ(x) measures
the curvature of the wavefunction. In some way it is a surrogate for the (kinetic) energy of the
particle. Schrödinger never came to terms with the physical meaning of ψ(x).

From this equation, Schrödinger proceeded to carry out an integration by parts. This resulted
in an expression involving a second derivative (∇2ψ(x)) that we now call Schrödinger’s equation.

2 Matrix Mechanics

The transformation from Wave Mechanics to Matrix Mechanics is effected by sampling the wave-
function, the potential, and the “kinetic energy” at a (discrete) set of points. We take these points
to be in the appropriate configuration space. The wavefunctions and the potential are approximated
throughout space in terms of a basis set of real functions:

ψ∗(x) =
∑

i

φifi(x) V (x) =
∑

j

Vjfj(x) ψ(x) =
∑

k

ψkfk(x) (2)

In this resolution we explicitly introduce the idea that the functions ψ∗(x) and ψ(x) can be varied
independently. When these expansions are plugged into the variational version of Schrödinger’s
equation we find

δ

{

~
2

2m
φi(∇fi∇fk)ψk + φiVj(fifjfk)ψk − φiE(fifk)ψk

}

= 0 (3)
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(summation convention used throughout). In these expressions, the parentheses indicate integration
over all space: for example (fifjfk) =

∫

fi(x)fj(x)fk(x) d3x. The variational equation is satisfied
if it holds for any variation in the coefficients φi, for example φi = δil. In this case the variational
equation becomes a “simple” matrix equation:

Kik = (∇fi∇fj)
Mikψk = 0 where Mik = Kik + Vik − ESik and Vik = Vj(fifjfk)

Sik = (fifk)
(4)

Construction of the Kinetic Energy, Potential Energy, and Overlap Matrices (K,V ,S) becomes
almost straightforward with appropriate choices of the basis functions fi(x).

3 Tessellation

It is useful to divide the configuration space under consideration into small units. The most conve-
nient units are simplices. In D dimensions these small building blocks are line segments (D = 1),
triangles (D = 2), and tetrahedra (D = 3). A D-dimensional simplex is specified by its D + 1
vertices. For example, a line segment in R1 is defined by its two end points a and b. Triangles in a
plane are defined by their three vertices (a1, a2), (b1, b2), (c1, c2). And tetrahedron in R3 are defined
by their four vertices (a1, a2, a3), (b1, b2, b3), (c1, c2, c3), (d1, d2, d3). It is useful to identify simplices
with special determinants:

∆(a, b) =

∣

∣

∣

∣

a 1
b 1

∣

∣

∣

∣

∆(a,b, c) =

∣

∣

∣

∣

∣

∣

a1 a2 1
b1 b2 1
c1 c2 1

∣

∣

∣

∣

∣

∣

∆(a,b, c,d) =

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 a3 1
b1 b2 b3 1
c1 c2 c3 1
d1 d2 d3 1

∣

∣

∣

∣

∣

∣

∣

∣

(5)

The volume of a D-dimensional simplex is the determinant of the corresponding (D + 1) × (D + 1)
matrix, divided by D!. For example, the volume of the tetrahedron with vertices at a,b, c,d is
1
3!∆(a,b, c,d).

4 Basis Functions

A simple and convenient set of basis functions consists of the set of piecewise linear functions that
assume the value +1 on one vertex and drop to zero linearly at all the other vertices of simplices
sharing this vertex. Such functions are conveniently represented as ratios of determinants. For
example, in 2 dimensions the function fb,(a,c)(x, y) on the simplex with vertices a, b and c is
obtained from ∆(a,b, c) by replacing row b by x = (x, y) and dividing through by ∆(a,b, c):

fb,(a,c)(x, y) = ∆(a,x, c)/∆(a,b, c) =

∣

∣

∣

∣

∣

∣

a1 a2 1
x y 1
c1 c2 1

∣

∣

∣

∣

∣

∣

÷

∣

∣

∣

∣

∣

∣

a1 a2 1
b1 b2 1
c1 c2 1

∣

∣

∣

∣

∣

∣

(6)

The function fb,(a,c)(x, y) is +1 at the vertex b and falls linearly to zero at vertices a and c. It is
defined to be zero outside the simplex a,b, c.

This function is linear in x and y over the simplex a,b, c. Its gradient therefore has x- and
y-components components obtained by replacing (x, y, 1) → (1, 0, 0) and (x, y, 1) → (0, 1, 0), resp:
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∆(a,b, c)∇fb,(a,c)(x, y) =

∣

∣

∣

∣

∣

∣

a1 a2 1
1 0 0
c1 c2 1

∣

∣

∣

∣

∣

∣

e1 +

∣

∣

∣

∣

∣

∣

a1 a2 1
0 1 0
c1 c2 1

∣

∣

∣

∣

∣

∣

e2 (7)

This result holds generally, and simplifies computation of the kinetic energy matrix K.
The basis function at a point is the union (or sum) of basis functions on all simplices sharing

that point. Such a union has value +1 at the point and drops off linearly within each simplex as the
other vertices are approached. If, for example, five triangles share a common vertex at a and have
d1,d2,d3,d4,d5 as their other defining vertices, then

fa(x, y) = fa,(d1,d2)(x, y) + fa,(d2,d3)(x, y) + fa,(d3,d4)(x, y) + fa,(d4,d5)(x, y) + fa,(d5,d1)(x, y) (8)

and the function faψa is the function whose value is ψa at the vertex a and which decreases linearly
to 0 at the five vertices d1,d2,d3,d4,d5. It is not differentiable at any vertex or on edges joining
any two vertices. This does not create a problem for treatment of the Schrödinger equation.

The value of the wavefunction ψ(x) (and potential V (x)) is approximated by a discrete set of
numbers ψa through the superposition

ψ(x, y) =
∑

all a

ψafa(x, y) (9)

where fa(x, y) is a function of the type described by Eq.().

5 Important Integrals

Functions fa depend on the nature of the tessellation, so that integrals of these functions with
others of this type change from problem to problem, and even for the same problem with different
tessellations. Integrals of functions defined only on a single simplex such as fa,(b,c)(x, y) do not
suffer this problem. They are proportional only to the volume of the simplex, or to the determinant
of the associated matrix.

For this reason it is useful to compile a table of values of integrals involving such functions.
These integrals vanish unless indices i and j “belong” to the same simplex. If they do, (fi, fj) has
one value if fi and fi assume value +1 at the same vertex (it doesn’t matter which) and a different
value if they assume values +1 at different vertices (again, it doesn’t matter). Similar statements
hold for integrals of three functions fi. The results are summarized in Table 1. The various possible
cases are summarized using the notation of Young partitions: (2,0) means that both functions on
the same simplex have values +1 at the same vertex and (1,1) means that they have values +1 at
different vertices. In the case of integrals over three functions the possibilities are: (3,0) — all three
functions are identical; (2,1) — two are identical and one is different; (1,1,1) — all three functions
reach +1 at different vertices (not possible in 1 dimension).

Gradients are inversely proportional to the determinant and independent of coordinates. As a
result, they are given by inner products of determinants of the form shown in Eq.(??), divided by
∆(∗)2, and multiplied by the volume, ∆/D!. As a result, (∇fi∇fj) = D!∆(∗)× dot product of two
determinants. For example
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Table 1: Integrals involving two and three functions over a single simplex are proportional to the
volume of the simplex, and therefore the determinant associated with the simplex. The integrals
depend on whether the functions are +1 at the same vertex or different vertices. All integrals are
normalized by the corresponding determinant.

D = 1 D = 2 D = 3

(fifj)/∆(a, b) (fifj)/∆(a,b, c) (fifj)/∆(a,b, c,d)

(2, 0) 1/3 1/6 1/10
(1, 1) 1/6 1/12 1/20

(fifjfk)/∆(a, b) (fifjfk)/∆(a,b, c) (fifjfk)/∆(a,b, c,d)

(3, 0) 1/4 1/10 1/20
(2, 1) 1/12 1/30 1/60

(1, 1, 1) −− − 1/60 1/120

2!∆(a,b, c)(∇fa,(b,c)∇fb,(a,c)) =

∣

∣

∣
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∣

∣

1 0 0
b1 b2 1
c1 c2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 1
1 0 0
c1 c2 1

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

0 1 0
b1 b2 1
c1 c2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 a2 1
0 1 0
c1 c2 1

∣

∣

∣

∣

∣

∣

= (b2 − c2) (c2 − a2) + (c1 − b1) (a1 − c1)
(10)

In one dimension (b−a)(∇fa,(b)∇fa,(b)) = (b−a)(∇fb,(a)∇fb,(a)) = +1 and (b−a)(∇fa,(b)(∇fb,(a)) =
−1.

6 One-Dimension

We illustrate this method first with a simple one-dimensional problem. The potential is local and
assumed to be V (x). The interval is divided into simplices. In this case the simplices are subintervals.
The endpoints of these intervals are indexed by integers i (i ↔ xi) and the subinterval between i
and i+1 has length ∆i,i+1 = xi+1 −xi. The subintervals do not necessarily have equal lengths. The
potential V (x) is represented by the values of the discrete set Vi by means of

V (x) =
∑

i

Vifi(x) fi(x) = fi,(i−1)(x) + fi,(i+1)(x) (11)

The function fi(x) is +1 at xi and drops off linearly to zero at the adjacent vertex i− 1 (courtesy
of fi,(i−1)(x)) which is 0 on (i, i+ 1) and also drops off linearly from +1 at i to 0 at i+ 1 courtesy
of fi,(i+1)(x).

The ith row of the overlap matrix is

Sij → ...,
∆i−1,i

6
,
∆i−1,i

3
+

∆i,i+1

3
,
∆i,i+1

6
, ... (12)

The ith row of the potential energy matrix is
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Vij → ...,
Vi−1 + Vi

12
∆i−1,i,

(

Vi−1

12
+
Vi

4

)

∆i−1,i +

(

Vi

4
+
Vi+1

12

)

∆i,i+1,
Vi + Vi+1

12
∆i,i+1, ... (13)

Finally, the ith row of the kinetic energy matrix is

Kij → ...,−
1

∆i−1,i

,
1

∆i−1,i

+
1

∆i,i+1
,−

1

∆i,i+1
, ... (14)

Each of the three matrices K,V ,S is symmetric (always). In this simple one-dimensional case each
matrix is also tridiagonal.

7 Boundary Conditions

The first problem treated in most Quantum Mechanics texts is a particle confined to a one-dimensional
box. For such problems, the potential is assumed to be finite (usually 0) from x = 0 to x = a and
infinitely high outside this region. The boundary conditions are ψ(x = 0) = 0 and ψ(x = a) = 0.
This translates, in Matrix Mechanics language, to the vanishing of the coefficients of ψ at the bound-
ary vertices. If the simplex coordinates are 0 ≤ i ≤ N + 1 so that xi = i × a/(N + 1), then the
boundary conditions force ψ0 = 0 and ψN+1 = 0. The matrix to be diagonalized is the N × N
matrix K+V −SE and its eigenvectors (ψ1, ψ2, · · · , ψN )t provide the approximations to the various
eigenfunctions ψ(x).

Many pertinent problems have no discontinuity in the potential. Instead, the potential is finite
(perhaps very large) for all interesting values of x. Two useful examples are the harmonic potential
V (x) = k

2x
2 and the Ginzburg-Landau potential V (x) = −λ

2x
2 + 1

4x
4. In such cases a finite length

along the x axis is chosen (for example, −L ≤ x ≤ +L) and divided into segments. The boundary
values ψ0 and ψN , where i = 0 indexes x = −L and i = N indexes x = +L, are not forced to be zero
and are retained in the computation. An (N + 1)× (N + 1) matrix is diagonalized. Eigenfunctions
for which the boundary components ψ0 and ψN are both approximately zero are candidates for good
approximations to the eigenvalues ψ(x) of the original Schrödinger equation. Those eigenvectors of
the matrix diagonalization where either of the boundary values for ψ is nonzero must be rejected as
candidates for proper wavefunctions. There must always be eigenfunctions whose boundary values
are nonzero, since eigenfunctions are forcibly orthogonal. As a result, the key to successful use of
finite-dimensional matrix diagonalizations as an approximation to Wave Mechanics is determining
where to draw the line between good and bad approximations to spatial eigenfunctions ψ(x).

8 Two Dimensions

As our first two-dimensional problem we consider a particle of mass m confined to an infinitely deep
triangular shaped potential well. The triangle has vertices at the origin (x, y) = (0, 0) = a, along
the x-axis at (b, 0) = b, and a distance h above the x-axis at (a, h) = c:

a = (0, 0) b = (b, 0) c = (a, h)

The determinant, function fa,(b,c)(x, y), and partial derivative ∂fa,(b,c)(x, y)/∂y are
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∆(a,b, c) =

∣

∣

∣

∣

∣

∣

0 0 1
b 0 1
a h 1

∣

∣

∣

∣

∣

∣

fa,(b,c)(x, y) =

∣

∣

∣

∣

∣

∣

x y 1
b 0 1
a h 1

∣

∣

∣

∣

∣

∣

∆(a,b, c)

∂fa,(b,c)(x, y)

∂y
=

∣

∣

∣

∣

∣

∣

0 1 0
b 0 1
a h 1

∣

∣

∣

∣

∣

∣

∆(a,b, c)

bh
(a− b)y + h(b − x)

bh

a− b

bh

(15)

The triangle will be partitioned into smaller simplices as follows. Each of the three edges is
divided into N subintervals of the same length along the respective edges. (N − 1) lines are drawn
parallel to one side through pairs of points along the other two edges. This is done for each of the
three edges. The decomposition is shown in Fig. 1 for N = 5.

This decomposition results in N2 smaller triangles and a total of (N +1)(N +2)/2 vertices. The
smaller triangles are all congruent to each other, and similar to the original triangle. As a result,
the integrals for the smaller triangles are all proportional to the integrals for the larger triangle.

For the large triangle these integrals are multiplied by ∆(a,b, c) = bh (Table 1):

∆(a,b, c) = bh (fafa) = bh/6 (fafb) = bh/12
(fafafa) = bh/10 (fafafb) = bh/30 (fafbfc) = bh/60

(16)

For the large triangle the gradient integrals are divided by 2∆(a,b, c) = 2bh (Eq.(10)):

(∇fi∇fj) →

∇fa,(b,c) ∇fb,(a,c) ∇fc,(a,b)

∇fa,(b,c) h2 + (b − a)2 −h2 + a(b− a) −b(b− a)
∇fb,(a,c) −h2 + a(b − a) h2 + a2 −ab
∇fc,(a,b) −b(b− a) −ab b2

(17)

Since ∆(a,b, c) scales like 1/N2, the integrals of the functions over the smaller triangles scale
like 1/N2 and the gradient integrals scale like N2.

In going beyond one dimension we lose the linear progression among the indices describing
position in the matrices and theD coordinates describing the positions of the vertices. For the regular
tessellation shown in Fig. 1 this problem is mitigated with the following strategy. Each coordinate
in the plane R2 is represented by three integers i, j, k, with 0 ≤ i, j, k ≤ N and i+ j + k = N . This
indexing is shown in Fig. 1. There is a linear relation between the coordinates (x, y) of a vertex in
the tessellated triangle and the triple (i, j, k):





x
y
1



 =





D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

1/N 1/N 1/N









i
j
k



 (18)

By identifying the vertices a,b, c with triples (N, 0, 0), (0, N, 0), and (0, 0, N), resp., it is a simple
matter to determine the matrix elements Dij :





a1 b1 c1
a2 b2 c2
1 1 1



 =





D1,1 D1,2 D1,3

D2,1 D2,2 D2,3

1/N 1/N 1/N









N 0 0
0 N 0
0 0 N



 (19)

To check whether two vertices belong to the same simplex the differences of their integer coor-
dinates is computed: (∆i,∆j,∆k). If |∆i| + |∆j| + |∆k| is zero, the vertices are the same. If this
sum is 2, the vertices belong to the same simplex (two, in fact). Otherwise, they are disjoint and all
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Figure 1: Triangle tessellation.
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matrix elements for this pair of vertices are zero. For example, (2, 0, 3) and (1, 1, 3) belong to two
simplices while (2, 0, 3) and (4, 0, 1) do not.

When two distinct vertices belong the the same simplex, the edge connecting these vertices is
parallel to one of the edges of the initial triangle according to

∆i = 0 ↔ ac ∆j = 0 ↔ ab ∆k = 0 ↔ bc (20)

The boundary conditions for this problem are that the wavefunction vanishes at all edges. As a
result we set all ψa = 0 if a is a boundary vertex in the tessellated triangle. There are 3N boundary
vertices: v is a boundary vertex if one of the three integers (i, j, k) in its ternary representation is
zero. The result is a set of vertices with ternary representation (i, j, k) with 1 ≤ i, j, k ≤ N and
i+ j + k = N . The total number of vertices is reduced to (N − 1)(N − 2)/2. For N = 5 this means
that a 6 × 6 matrix must be diagonalized.

In preparation for creating the matrices S,K,V it is useful first to construct a matrix T (topo-
logical matrix or connectiving matrix) that identifies just how the coordinates in the tessellation are
connected. For the triangle shown in Fig. 1 this matrix is

T =

















∗ ac 0 ab 0 0
ac ∗ ac bc ab 0
0 ac ∗ 0 bc 0
ab bc 0 ∗ ac ab

0 ab bc ac ∗ bc

0 0 0 ab bc ∗

































1
2
3
4
5
6

















↔

















(1, 1, 3)
(1, 2, 2)
(1, 3, 1)
(2, 1, 2)
(2, 2, 1)
(3, 1, 1)

















(21)

To the right of this matrix are the indices that label the interior vertices of the tessellation. They
are given in numerical order in which they index matrices input to and output from a computer,
and in triples (i, j, k) satisfying the conditions described above. The relation between the computer
indices n = n(i, j, k) and the triples (i, j, k) is

(i, j, k) → n =
1

2
(N − 2)(N − 1) −

1

2
(N − 1 − i)(N − i) + j (22)

Going backward from n(i, j, k) to the triple (i, j, k), subtract (N − 2) from n, then (N − 3), then
(N − 4), etc. At each step, check that the remainder is greater than zero. When this test fails, add
back the last integer that was subtracted. Then i is the total number of subtractions, j is the integer
obtained after the last addition, and k = N − i− j.

The nondiagonal entries in T indicate which edge connects two vertices. For example, ac indicates
that two vertices (e.g., 1 and 2 or (1,1,3) and (1,2,2)) are connected to an edge in a smaller triangle
that is similar to the edge ac of the original triangle. An entry 0 indicates that the two vertices are
not contained in any simplex. The larger N , the smaller the ratio of nonzero matrix elements to
zero matrix elements - the matrix T is sparse.

At this point a sanity check is useful. This matrix must satisfy a number of symmetries, some
transparent and others not so obvious. For example, the number of letters a in this distribution is
2N , and similarly for b and c. The number of nonzero offdiagonal matrix elements is 3 ×N .

The nature of the tessellation, which produces a whole bunch of smaller triangles, all congruent to
each other and similar by a simple scale factor (1/N) to the original, allows us to “mass-produce” the
matrix elements for the overlap matrix S and the kinetic energy matrix K. These are constructed by
computing the integrals (fifj) and (∇fi∇fj) in the original large triangle, scaling appropriately, and
substituting into T . We reserve introducing the scaling factors until the last step. The substitutions
provided in Table 2 are appropriate to convert T into matrices proportional to S and K:
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Table 2: Substitutions useful for converting the connectivity matrix T to matrices S and K. Here
A is the area of the large triangle: 1

2bh.

S K
∗ ab,ac,bc ∗ ab ac bc

6
6A

2
12A 2(2h2 + a2 + b2 + (a− b)2) 2(−h2 + a(b− a)) 2(−ab) 2(−b(b− a))

We illustrate how this works for the triangle with one vertex at the origin, another along the
x-axis at (2,0), and the third in the x-y plane at (− 1

2 , 1). This triangle has area 1. The 25 smaller
triangles have area 1/52. The (unscaled) matrices S and K are

S(unscaled) =

















1 1/6 0 1/6 0 0
1/6 1 1/6 1/6 1/6 0
0 1/6 1 0 1/6 0

1/6 1/6 0 1 1/6 1/6
0 1/6 1/6 1/6 1 1/6
0 0 0 1/6 1/6 1

















(23)

K(unscaled) =

















25 2 0 −9/2 0 0
2 25 2 −10 −9/2 0
0 2 25 0 −10 0

−9/2 −10 0 25 2 −9/2
0 −9/2 −10 2 25 −10
0 0 0 −9/2 −10 25

















(24)

The eigenvalue equation is obtained by combining these two matrices with the appropriate scaling
factors:

(

52

2
K(unscaled) −

2

52
S(unscaled)E

)

ψi = 0 (25)

The scaling factor is N±2: +2 for the matrix K and −2 for the matrix S. The factors 5 (5±2) come
from the N2 scaling and the factors 2 are from ∆(a,b, c), where the area of the large triangle is
1
2bh = 1.

9 Solving the Eigenvalue Equation

10 Improving the Results
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