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Abstract

Ehrenfest’s Theorems provide a bridge between quantum and classical mechanics. They
relate time derivatives of expectation values to expectation values of appropriate operators.
The expectation values are computed on quantum mechanical operators. The results assume a
form “as close as possible” to the corresponding classical equations.

1 Introduction

The Ehrenfest Theorem, or Theorems, have the form

d

dt
〈A〉 = 〈∂A(x, t)

∂t
〉+

i

~
〈[H,A]〉 (1)

In this expression H(x, p, t) is the hamiltonian that describes the system and A(q, p, t) is some
operator.

2 Proofs

The theorem is true both for pure states and for mixed states. Pure states are described by a
wavefunction ψ(x, t) (in the coordinate representation) and mixed states are described by a hermitian
density operator ρ(x, t) (again, in the coordinate representation). The wave function, its adjoint,
and the density operator obey the following equations of motion:

i~
∂ψ(x, t)
∂t

= Hψ(x, t) − i~∂ψ(x, t)†

∂t
= ψ(x, t)†H i~

∂ρ(x, t)
∂t

= [H, ρ] (2)

2.1 Pure States

The expection value of an operator A(x, t) in a pure state ψ(x, t) is

〈A〉 =
∫
ψ†(x, t)A(x, t)ψ(x, t)dV (3)

We take the time derivatives of both sides:

i~
d

dt
〈A〉 =

∫ (
i~
∂ψ†

∂t

)
Aψ dV +

∫
ψ†A

(
i~
∂ψ

∂t

)
dV +

∫
ψ†
(
i~
∂A

∂t

)
ψ dV (4)

and use Eq.(2) for the evolution of ψ(x, t) and its adjoint to find

d

dt
〈A〉 = 〈∂A(x, t)

∂t
〉+

1
i~
〈(−HA+AH)〉 = 〈∂A(x, t)

∂t
〉+

i

~
〈[H,A]〉 (5)

This is the Ehrenfest Theorem for pure states.
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2.2 Mixed States

For mixed states, expectation values are constructed with the aid of the density operator ρ(x, t)
through 〈A〉 = Trρ(x, t)A(x, t) = TrA(x, t)ρ(x, t). The equation of motion for the expectation value
of A is

i~
d

dt
Trρ(x, t)A(x, t) = Tr

(
i~
∂ρ(x, t)
∂t

)
A(x, t) + i~ Tr

∂A(x, t)
∂t

ρ(x, t) (6)

We use the equation of motion for ρ(x, t) to replace its time derivative by [H, ρ], open up the
commutator, use the invariance of the trace under cyclic rotation of the operators, and divide by i~
to obtain

d

dt
〈A〉 = 〈∂A(x, t)

∂t
〉+

i

~
〈[H,A]〉 (7)

Ehrenfest’s Theorem holds in unchanged form for both pure and mixed states.

2.3 Heisenberg Representation

We have used the expression 〈ψ(t)|A|ψ(t)〉 for the expectation value of an operator A in the
Schrödinger representation. In the Heisenberg representation is this written as 〈ψ(0)U−1(t)|A|U(t)ψ(0)〉 =
〈ψ(0)|U−1(t)AU(t)|ψ(0)〉. In this representation the states are fixed and all the time dependence is
expressed in terms of the operator. The unitary operator obeys the equation of motion i~ ∂

∂tU(t) =
HU(t). The time derivative of the operator A(t) = U−1(t)A(0)U(t) is

d

dt
A(t) = U−1(t)

∂A

∂t
U(t) + U−1(t)

(
i

~
HA− i

~
AH

)
U(t) = U−1(t)

(
∂A

∂t
+
i

~
[H,A]

)
U(t) (8)

The right hand side includes the explicit time dependence of the operator A through the partial
derivative and the implicit time dependence through the hamiltonian dynamics. The expectation
value is taken using the time independent wavefunctions

d

dt
〈ψ(0)|A(t)|ψ(0)〉 = 〈ψ(0)|dA

dt
|ψ(0)〉 = 〈ψ(0)|U−1(t)

(
∂A

∂t
+
i

~
[H,A]

)
U(t)|ψ(0)〉 = 〈

(
∂

∂t
+
i

~
[H, ]

)
A〉

(9)
On the left, since the wavefunctions are independent of time, the time derivative can be commuted
out of the expectation value. On the right we find the standard expression for Ehrenfest’s theorem.
The same result is obtained in the Heisenberg representation using the density operator: ρ(t) =
U(t)ρ(0)U−1(t).

In this representation it is possible to obtain more powerful results than the Ehrenfest Theorem.
For example, expectation values of time derivatives of two or more operators are easily expressed:

〈AdB
dt
〉 = 〈A

(
∂B

∂t
+
i

~
[H,B]

)
〉 (10)

〈dA
dt

dB

dt
〉 = 〈

(
∂A

∂t
+
i

~
[H,A]

)(
∂B

∂t
+
i

~
[H,B]

)
〉 (11)

Higher time derivatives involve mixtures of higher partial derivatives and multiple commutators:
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d2

dt2
〈A〉 = 〈ψ(0)| d

2

dt2
A(t)|ψ(0)〉 = 〈 ∂

∂t

(
∂A

∂t
+
[
i

~
H,A

])
〉+ 〈

[
i

~
H,

∂A

∂t
+
[
i

~
H,A

]]
〉 (12)

2.4 Classical — Quantum Comparison

In classical mechanics the time evolution of an operator A(q(t), p(t); t) is

dA(q, p; t)
dt

=
∂A

∂t
+
∑
i

(
∂A

∂qi

dqi
dt

+
∂A

∂pi

dpi
dt

)
(13)

This consists of the sum of two contributions. One comes from the explicit time dependence of
A(q, p; t) through the term ∂A/∂t. The value of A also depends implicitly on time through the
dependence of the coordinates qi(t) and momenta pi(t) on time. These terms are contained within
the large bracket. We use Hamilton’s equations of motion dqi/dt = ∂H/∂pi and dpi/dt = −∂H/∂qi
to write this evolution equation in the suggestive form

dA(q, p; t)
dt

=
∂A

∂t
+
∑
i

(
∂A

∂qi

∂H

∂pi
− ∂A

∂pi

∂H

∂qi

)
→ ∂A

∂t
+ {A,H} (14)

The curly brackets { } are the standard representation for the Poisson bracket:

{A,B} =
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi

)
(15)

By comparing the Classical result Eq. (14) with the Quantum result Eq. (7) we can infer that
a useful quantization condition, allowing immediate, algorithmic passage from classical to quantum
mechanics, is the identification between Poisson brackets and commutator brackets:

{A,B} ↔ 1
i~

[A,B] (16)

This correspondence is the raison d’etre for Goldstein’s beautiful book. Applying this quantization
algorithm to the coordinate and momentum operators gives:

[qi, pj ] = i~ {qi, pj} = i~δij (17)

This algorithm shows clearly that the canonical coordinates are no longer commuting variables. We
can choose to express either p in terms of q as pj → ~

i
∂
∂qj

or q in terms of p as qj → −~
i
∂
∂pj

. In
finite-dimensional spaces we must choose the n× n matrix representatives of qi and pj so that they
satisfy these commutation relations: [qi, pj ] = i~In.

3 Applications

This theorem is applied to a number of important operators. These include the position and mo-
mentum operators x and p for a single particle. These operators have no explicit time dependence,
so that ∂x/∂t = ∂p/∂t = 0. For these operators, and for a hamiltonian with the simple form
H(x,p, t) = p·p

2m + V (x, t), the important commutators are

[H,x] =
~
i

p
m

[H,p] = −~
i
∇V (x, t) (18)
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For more general hamiltonians that depend on N coordinates qi and momenta pj which are canon-
ically conjugate (this means [qr, ps] = −~

i δrs) the important commutators are

[H(q, p, t), qr] = +
~
i

∂H

∂pr
[H(q, p, t), ps] = −~

i

∂H

∂qs
(19)

The second relation is obtained by expressing ps in the coordinate representation as ps = ~
i
∂
∂qs

,
while the first is obtained by expressing qr in the momentum representation as qr = −~

i
∂
∂pr

.

3.1 Momentum and Velocity: A = x

The the equation of motion for the centroid of x is

d

dt
〈x〉 = 〈∂x

∂t
〉+

i

~
〈[H,x]〉 = 〈 p

m
〉 (20)

3.2 Newton’s Second Law: A = p

Similarly,

d

dt
〈p〉 =

i

~
〈[H,p]〉 = 〈−∇V (x)〉 = 〈F(x)〉 (21)

3.3 Acceleration: Second Derivative

The second derivative of the expectation value of the position operator is

m
d2

dt2
〈x〉 = 〈

[
i

~
H,

[
i

~
H,mx

]]
〉 = 〈

[
i

~
H,p

]
〉 = 〈−∇V 〉 = 〈F〉 (22)

3.4 Generalized Harmonic Motion

The hamiltonain that describes simple harmonic motion in one dimension is H = p2

2m + 1
2kx

2. The
second order equation of motion for 〈x〉 is

d2

dt2
〈x〉 = 〈

[
i

~
H,

[
i

~
H,x

]]
〉 = 〈

[
i

~
H,

p

m

]
〉 = 〈− k

m
x〉 (23)

The expectation value of x (also of p) obeys the harmonic equation:(
d2

dt2
+
k

m

)
〈x〉 = 0 (24)

More generally, harmonic motion involving many coupled degrees of freedom, as in a lattice or a
molecule under the small amplitude approximation, is governed by the hamiltonian

H =
1
2

(M−1)rsprps +
1
2
Krsqrqs (25)

Here M is the mass matrix (usually taken as diagonal and nonsingular) and K describes the con-
nectivity of the degrees of freedom. It may be singular, and when it is there is a Goldstone mode.
The coordinates and momenta are canonical: [pr, qs] = (~/i)δrs. The equation of motion for the
expectation value qr is
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d2

dt2
〈qr〉 = 〈

[
i

~
H,

[
i

~
H, qr

]]
〉 = 〈

[
i

~
H, (M−1)rsps

]
〉 = 〈−(M−1)rsKstqt〉 = −(M−1)rsKst〈qt〉

(26)
This expression and easily be disentangled and expressed in a form standard in classical physics:(

Mrs
d2

dt2
+Krs

)
〈qs〉 = 0 (27)

In this form it is clear that the classical and quantum normal modes ‘are the same’, behave the same
way, obey the same generalized eigenvalue equation, and have the same eigenstructure.

3.5 Orbital Angular Momentum and Torque: A = r× p

The expectation value of the orbital angular momentum is equal to the torque on a body. In quantum
form this is

d

dt
〈r× p〉 =

i

~
〈[H, r× p]〉 =

i

~
〈[H, r]×p〉+

i

~
〈r× [H,p]〉 = 〈 p

m
×p〉+ 〈r×(−∇V )〉 = 〈r× F(x)〉

(28)

3.6 Angular Momentum and Precession

First we treat spin precession. Then we treat the general angular momentum case.

3.6.1 Spin Angular Momentum: A = S

The magnetic moment µ of a point particle with charge q and spin S is µ = q
mcS. The interaction

of the moment with an external magnetic field is described by the hamiltonian H = −µ ·B. For the
simplest fermions (spin 1

2 ) the spin is S = ~
2σ, where the Pauli spin matrices satisfy the commutation

relations [σi, σj ] = 2iεijkσk. The standard representation for these matrices is

σ1 =
[

0 +1
+1 0

]
σ2 =

[
0 −i

+i 0

]
σ3 =

[
+1 0
0 −1

]
(29)

The operators S satisfy [Si, Sj ] = i~εijkSk. The time evolution of S is

d

dt
〈S〉 =

i

~
〈[−µ ·B,S]〉 =

q

mc
〈S×B〉 = 〈µ〉×B (30)

3.6.2 Arbitrary Angular Momentum: A = J

In this case µ = γJ and the angular momentum operators satisfy the commutation relations [Ji, Jj ] =
i~εijkJk. The equations of motion for 〈J〉 are

d

dt
〈J〉 =

i

~
〈[−γJ ·B,J]〉 = 〈γJ×B〉 = 〈µ〉×B (31)
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3.7 Lorentz Force: A =mv = Π = p− q
c
A

In the presence of an electromagnetic field that can be described in terms of vector and scalar
potentials A(x, t) and Φ(x, t) by

B(x, t) = ∇×A(x, t) E(x, t) = −∇Φ(x, t)− 1
c

∂A(x, t)
∂t

(32)

the following relation exists between the Newtonian momentum mv and the canonical momentum
p. For a particle of charge q

p = ∂L(x, ẋ, t)/∂ẋ = mv +
q

c
A(x, t) (33)

The hamiltonian is H = 1
2m

(
p− q

cA(x, t)
)2 +qΦ(x, t). The time evolution for the expectation value

of the Newtonian momentum is

d

dt
〈mv〉 = 〈∂Π

∂t
〉+

i

~
〈
[

Π2

2m
+ qΦ,Π

]
〉 (34)

where Π = p − q
cA(x, t) = mv. The time derivative of Π is − qc

∂A(x,t)
∂t . The second simple contri-

bution to the commutator is [qΦ,Π] = −~
i (q∇Φ). The contribution

[
Π2,Π

]
is not simple, since the

operators Πj do not commute. Rather, [Πi,Πj ] = − qc
~
i

(
∂Aj

∂xi
− ∂Ai

∂xj

)
= − qc

~
i εijkBk. The result is

1
2m

[
Π2,Π

]
=
q

c

~
i

1
2

(v ×B−B× v) (35)

where we have used Π/m = v. The net result is

d

dt
〈mv〉 = −〈q

c

∂A(x, t)
∂t

〉 − 〈(q∇Φ)〉+ 〈q
c

1
2

(v ×B−B× v)〉 (36)

Rearranging the terms slightly, we find

d

dt
〈mv〉 = q

(
〈−∇Φ− 1

c

∂A(x, t)
∂t

〉+
1
c
〈1
2

(v ×B−B× v)〉
)

= q

(
〈E〉+

1
c

1
2
〈(v ×B−B× v)〉

)
(37)

3.8 Hamilton’s Equations

For the general hamiltonian H(q, p, t) depending on N coordinates and their conjugate momenta,
the equations of motion for the expectation values 〈qi〉, 〈pj〉 (∂qi/∂t = ∂pj/∂t = 0) are as close as
can be expected to their classical counterparts:

d〈qi〉
dt

= 〈+∂H

∂pi
〉 d〈pj〉

dt
= 〈−∂H

∂qj
〉 (38)

3.9 The Virial: A = x · p
The virial operator is x · p. The time evolution of its expectation value is

d

dt
〈x · p〉 =

i

~
〈[H,x · p]〉 =

i

~
〈[H,x] ·p + x· [H,p]〉 = 〈 p

m
·p + x · F〉 = 〈2K + x · F〉 (39)
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where K is the kinetic energy operator. In a bound state 〈x · p〉 is bounded, so that its time averaged
value is zero

lim
T→∞

1
T

∫ T

0

d

dt
〈x · p〉 = lim

T→∞

finite− finite
T

→ 0 (40)

As a consequence, the time averaged value of 〈2K + x · F〉 also vanishes. This can be expressed as

〈〈2K + x · F〉〉T = 0 (41)

Double averages occur in this expression. The inner average is a quantum mechanical average.
The outer average is a long time average. For a homogeneous potential V (λx) = λnV (x) (for the
Coulomb potential n = −1), an Euler theorem about homogeneous functions (x · ∇V = nV ) allows
us to write

〈〈2K − nV 〉〉T = 0 (42)

If the localized state is also stationary (i.e., a bound eigenstate) the inner average is time independent
so the outer long time average can be removed, and we find

〈2K〉 = n〈V 〉 (43)

For the Coulomb potential (n = −1) this result tells us that the mean value of the potential energy
is twice that of the kinetic energy and of opposite sign. For the harmonic potential (n = 2) the
average kinetic energy is equal to the average potential energy (equipartition theorem).

3.10 Isotropic Oscillator and Quadrupole Tensor: A = Qij

The three-dimensional isotropic harmonic oscillator has its three resonance frequencies in 1 : 1 : 1
resonance and is described by the rotationally invariant hamiltonian H = p·p

2m + 1
2kx · x = 1

2~ω(a†iai+
aia
†
i ).

3.10.1 A Conserved Quantity

In addition to the orbital angular momentum L there is another set of constants of motion. These
are the components of the nine operators

Qij =
1

2m
pipj +

k

2
xixj =

1
2

~ω(a†iaj + a†jai) = Qji 〈Qij〉 = Qij (44)

The trace of Q is the hamiltonian H. The three sets of operators H,L,Q − 1
3δijH are irreducible

tensor operators of degree l = 0, 1, 2 and of dimension 1, 3, and 5, respectively. These nine operators
span the Lie algebra u(3) and the eight operators L and Q− 1

3δijH span su(3).
The expectation values of the quadrupole moment operators share many of the same properties

as the moment of inertia tensor:

• The nine expectation values Qij = 〈Qij〉 can be considered as the elements of a three by three
matrix.

• The matrix is symmetric.

• The Qij are constants of motion.
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• The real symmetric tensor Qij depends on the initial conditions. The eigenvalues of Qij are
the principal moments of inertia and the eigenvectors are the principal axes of the averaged
motion.

At the classical level it is a simple matter to show that the Qij are constants of motion:

d

dt
Qij =

ṗipj
2m

+
k

2
ẋixj +

piṗj
2m

+
k

2
xiẋj =

(−kx)ipj
2m

+
k

2
pi
m
xj +

pi(−kx)j
2m

+
k

2
xi
pj
m

= 0 (45)

This result extends to the quantum level, for

dQij
dt

=
d

dt
〈Qij〉 =

i

~
〈[H,Qij ]〉 =

i

~
〈 1
2m

[prpr, xixj ] +
k

2
[xrxr, pipj ]〉 = 0 (46)

3.10.2 Symmetry-Breaking

Nonquadratic perturbations to the hamiltonian break the u(3) symmetry. As a consequence the
principal axes will both rotate and change their magnitude. We consider a quartic perturbation of
the form Hpert = αp4 + βx4, where p4 = (p · p)2, and similarly for x4. The expectation value Qij
evolves according to

dQij
dt

=
αk

2
〈
{
p2, Tij

}
〉 − β

2m
〈
{
x2, Tij

}
〉 (47)

where
Tij =

i

~
[
p2, xixj

]
= − i

~
[
x2, pipj

]
= {xi, pj}+ {xj , pi} (48)

and {A,B} = AB + BA. The relativistic “mass-velocity correction” introduces a correction to the
nonrelativistic hamiltonian that is −p4/8m3c2 to lowest order. In this case the correction term in
Hpert has α = −1/8m3c2 and β = 0.

3.11 Euler’s Equations for Rigid body Motion

The hamiltonian for a rigid body with principle axis moments of inertia Ij is

H =
L̃2

1

2I1
+
L̃2

2

2I2
+
L̃2

3

2I3
+ V (x) (49)

Here Ij are the moments of inertia along the principal axes of the rotating rigid body. The coordinates
x and the angular momenta L̃j are measured with respect to the coordinate axis fixed in the body
(rotating coordinate system). These angular momenta commute with the angular momenta in the
laboratory frame, Lj (which satisfy [Li, Lj ] = +iεijkLk), and satisfy the commutation relations

among themselves
[
L̃i, L̃j

]
= −iεijkL̃k. The two sets of angular momenta L and L̃ span the Lie

algebra so(4) and are infinitesimal generators for the Lie group SO(4). The equations of motion for
the expectation values of the components of the angular momentum operator are
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d

dt
〈L̃1〉 = 〈1

2

{
L̃2, L̃3

}
〉
(

1
I3
− 1
I2

)
+ 〈(r× (−∇V ))1〉

d

dt
〈L̃2〉 = 〈1

2

{
L̃3, L̃1

}
〉
(

1
I1
− 1
I3

)
+ 〈(r× (−∇V ))2〉

d

dt
〈L̃3〉 = 〈1

2

{
L̃1, L̃2

}
〉
(

1
I2
− 1
I1

)
+ 〈(r× (−∇V ))3〉

(50)

The anticommutator {A,B} = AB + BA projects out twice the hermitian part of the product of
two hermitian operators A and B. If angular velocity operators ωj = L̃J/IJ are introduced, these
equations assume the standard form of the Euler rigid body equations of motion.

3.12 Runge-Lenz Vector

Laplace (1799) is usually credited with the discovery that in a gravitational potential the vector from
the focus of elliptical motion to the perihelion is invariant. However, this observation goes back at
least to Hermann (1710) and J. I. Bernoulli (1710). This vector was subsequently rediscovered by
many others (including Hamilton). In the twentieth century it was again rediscovered by Runge
(1919) and by Lenz (1924). It was later used by Pauli (1926) to construct a solution to the quantum
hydrogen atom problem in the matrix mechanics formulation. This vector is sometimes referred to
as the Laplace-Runge-Lenz-Pauli vector. It’s name is usually shortened to Runge-Lenz vector.

3.12.1 Classical Description

The hamiltonian that describes a particle in an attractive Coulomb or gravitational potential is
H = p·p

2m − K/r, where K = e2 or GMm and r = |r| and the central force is −kr/r3. Since
the hamiltonian is rotationally invariant the orbital angular momentum L is a constant of motion:
dL/dt = 0. There is another vector operator that is a constant of the motion. It is the Runge-Lenz
vector

M = v × L−Kr/r (51)

whose time derivative is zero:

dM
dt

=
F
m
×L−K ṙ(r · r)− r(r · ṙ)

r3
= 0 (52)

This vector is orthogonal to L and it points in the direction of the elliptical orbit’s perihelion. Its

length is M ·M = K2ε2, where ε =
(

1 + 2EL2

mK2

)1/2

is the orbital eccentricity. The orbital trajectory
is easily obtained by taking the dot product of M with r:

r(θ) =
L2/mK

1 + ε cos θ
(53)

The angle θ is measured from the perihelion. The period is T = 2π
√
m/K

(
K
−2E

)3/2

.
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3.12.2 Quantum Description

The corresponding quantum mechanical operator must be expressed in terms of the canonical mo-
mentum and must be hermitian. The obvious generalization is not hermitian, for (p× L)† = −L× p.
An appropriate hermitian operator is constructed by taking half the anticommutator of these oper-
ators:

M =
p× L− L× p

2m
−K r

r
−→ r(p · p)− (r · p)p− (~/i)p

m
−K r

r
(54)

The components of the orbital angular momentum operator L and those of the Runge-Lenz vector
M satisfy the commutation relations:

[Li, Lj ] = i~εijkLk
[Li,Mj ] = i~εijkMk

[Mi,Mj ] =
(
−2H
m

)
i~εijkLk

(55)

On the manifold of states with fixed energy (H → E) these operators close under commutation.
For bound states they span the compact Lie algebra so(4) and for scattering states they span the
noncompact algebra so(3, 1). Since M is (classically) a constant of motion, [H,M] = 0. Since M
carries no explicit time dependence the time derivative of its expectation value is zero:

d

dt
〈M〉 = 〈∂M

∂t
〉+

i

~
〈[H,M]〉 = 0 (56)

3.13 Non Coulombic Perturbations

When the potential is not perfectly coulombic the Runge Lenz vector is no longer a constant of
motion. If the perturbation from the 1/r potential is sufficiently small, the orbits can still usefully
be approximated as ellipses. In such cases the eccentricity may vary with time and the perihelion
could also vary with time.

3.13.1 Classical Description

In the presence of a spherically symmetric perturbation on an attracting Coulomb potential, the
hamiltonian and the force are

H =
p2

2m
− K

r
+ V (r)

F = −K r
r3
− dV

dr

r
r

(57)

We will assume that 〈V (r)〉 � 〈K/r〉 and 〈 1r
dV
dr 〉 � 〈K/r

2〉. The orbital angular momentum L
remains a constant of the motion but the Runge-Lenz vector is no longer a constant of the motion.
It has neither constant length nor orientation but remains orthogonal to L. The length is

M2 =
2EL2

m
+K2 − 2L2

m
V (r) = K2ε2 − 2L2

m
V (r) (58)

The vector precesses in the direction of the perihelion with a vector angular velocity ω defined by

10



M× Ṁ = M2ω =
1
m

(
−dV
dr

)(
K − L2

mr

)
L (59)

As a result,

ω =
1
m

(
−dVdr

) (
K − L2

mr

)
K2ε2 − 2L2

m V (r)
L (60)

The most important class of perturbations is the attractive 1/r2 potential, for which V (r) = − β
r2

and −∇V (r) = − 2β
r3

r
r (β > 0). Under such a perturbation the orbital trajectory has a form similar

to that of the unperturbed trajectory:

r(θ) =
µ2L2/mK

1 + ε′ cos(µθ)
(61)

where

µ =
(

1− 2mβ
L2

)1/2

ε′ =
(

1 +
2µ2L2E

mK2

)1/2

(62)

The angular advance δθ per period, measured in radians, is determined from

µ(2π + δθ) = 2π ⇒ δθ = 2π(µ−1 − 1) ' 2π
(
mβ

L2

)
(63)

and the rate of precession is δθ/T = 2πmβ/L2T ' β
√
m(−2E)3/2/KL2.

The relativistic “mass velocity correction” to the hamiltonian has the form −p4/8m3c2. This per-

turbation is conveniently replaced by−
(
p2

2m

)2

/2mc2, which is further simplified to− 1
2mc2

(
E + K

r

)2
.

When this is opened up there is a slight perturbation to the energy of E2

2mc2 and to the coupling con-
stant, K → K(1 + E/mc2). There is also a 1/r2 contribution to the potential, with β = K2/2mc2.
This results in a precession of the perihelion that amounts to

∆φS.R. =
πGM

a(1− ε2)
radians/revolution (64)

for a planet with semimajor axis a and eccentricity ε in orbit around the sun, of mass M . This
advance is due entirely to Special Relativistic effects. The advance in the perihelion due to General
Relativistic effects is six times larger:

∆φG.R. = 6∆φS.R. (65)

For Mercury in orbit around the sun these advances are small: 7 seconds/century according to
Special Relativity and 43 seconds/century according to General Relativity.

3.13.2 Quantum Description

That M is no longer a constant of motion under the perturbation is shown by

d

dt
〈M〉 = 〈 i

~
[H,M]〉 = 〈 i

~
[V (r),M]〉 = − V ′

2mr
{r× L− L× r} = 〈− V

′

mr
{r(r · p) + r(~/i)− (r · r)p}〉

(66)
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The precession rate can be estimated from

〈M2ω〉 =
1
2
〈M× Ṁ− Ṁ×M〉 =

i

~
〈M× [H,M]− [H,M]×M〉 (67)

where

M =
r(p · p)− (r · p)p− (~/i)p

m
−K r

r
(68)

where i
~ [H,M] is computed in Eq. (66). The result is:

(69)

4 Multilevel Systems

There are many instances in which it is desirable to provide an intuitive classical representation for
the dynamics of a multilevel system. The oldest and best known case is the semiclassical represen-
tation of a precessing spin. It’s motion is represented by the precession of the spin’s Bloch vector.
The Bloch vector itself is the expectation value of the three spin operators, themselves proportional
to the Pauli spin matrices. The rotation of a “classical” three-vector provides physicists with a
concrete representation of the dynamics at both the classical and quantum mechanical levels.

At the quantum level, the dynamics of an n-level system is described by the analogs of the Pauli
spin operators. These analogs are n × n traceless hermitian matrices. There are n2 − 1 linearly
independent matrices that span this space: Xi, i = 1, 2, ..., n2 − 1. It is useful to choose their
properties as follows (A. J. MacFarlane, A. Sudbury and P. H. Weisz, On Gell-Mann’s λ-Matrices,
d- and f -Tensors, Octets, and Parameterizations of SU(3), Commun. Math. Phys. 11, 77-90
(1968)):

(Xi, Xj) = Tr XiXj = 2δij

XiXj =
2
n
Inδij + (dijk + ifijk)Xk

[Xi, Xj ] = 2ifijkXk

{Xi, Xj} = 2dijkXk + 4
nInδij

(70)

In the expressions above the third rank tensors f and d are completely antisymmetric and completely
symmetric, respectively. For n = 2 these conditions define the properties of the Pauli spin matrices
and fijk = εijk, and for n = 3 these conditions define the properties of the Gell-Mann SU(3) matrices
λi, i = 1, 2, ..., 8.

The quantum dynamics of an n level system can be described by a hamiltonian that is linear in
the hermitian infinitesimal generators of the Lie group U(3). If the hamiltonian is taken traceless
by an appropriate resetting of the energy, it can be expressed as a linear superposition of the n2− 1
hermitian generators Xi of SU(n). Before doing this, it is useful to define n2 − 1 rescaled operators
by Si = ~

2Xi. The hamiltonian can be written

H = −γBiSi (71)

where the n2 − 1 coefficients Bi must be real to preserve hermiticity and may be time dependent.
The dynamics is usefully described in terms of the expectation values Mi = 〈Si〉. The time

evolution of the expectation values Mi are
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d

dt
Mi =

i

~
〈[−BjSj , Si]〉 = −γfijkBjMk (72)

This is a generalization of Bloch dynamics from 2- to n-level systems. The expectation values
Mi = 〈Si〉 = 〈~2Xi〉 obey linear equations of motion that preserves length: d

dtMiMi = 0.
Losses can be included by introducing damping terms:

d

dt
Mi = −γfijkBjMk −

1
Ti

(Mi −Mi(∞)) (73)

Here the dissipation terms are represented as temperatures, one for each degree of freedom. The
n2 − 1 terms Ti are not necessarily independent.

5 Systems Described by a Lie Algebra

A number of quantum systems are described by a hamiltonian that is linear in the generators of
a Lie group. These include collections of N interacting harmonic oscillators; fields containing a
finite number of modes; hamiltonians that are bilinear in the coordinate and momentum operators;
systems containing only a finite number of levels of interest. In short, many quantum systems fall
into this class, or can be approximated by models in this class.

Define Xi to be the generators of the Lie group (i = 1, 2, ..., D, where D is the dimension of
the group/algebra), choose the Xi to be hermitian. This can be done if the group is compact. The
structure of the Lie algebra is encoded in the structure constants, defined by [Xi, Xj ] = ic k

ij Xk.
The structure constants are antisymmetric in the covariant indices i and j. It is not possible to
discuss antisymmetrization in all three indices since k is a contravariant index. If it is possible to
lower this index, then the symmetry properties of the index triple (ijk) can be investigated.

The contravariant index k can be lowered if it is possible to construct a nonsingular metric
tensor gij = gji. The only data available with which to try to construct a metric tensor are the
structure constants. In order to get something with two covariant indices from a tensor with two
covariant indices and one controvariant index we use two of the latter type tensors, and perform a
double contraction. The object

∑
r

∑
s c

r
ir c

s
js loses information, as it depends on only D quantities

vi =
∑
r c

r
ir . A cross-contraction does the job: gij =

∑
r

∑
s c

s
ir c

r
js . If this is nonsingular, so

that an inverse gij can also be computed, then it is possible to raise and lower indices without
restraint. In particular, it is possible to show that cijk =

∑
r c

r
ij grk is totally antisymmetric:

cijk = cjki = ckij = −ckji = −cjik = −cikj . It is also possible to show that the scalar operator∑
i

∑
j g

ijXiXj commutes with all operators Xk. Such a scalar is called a Casimir invariant.
Write the hamiltonian as H = ~ΩiXi and introduce the expectation values Mi = 〈Xi〉 as the

appropriate order parameters of the system. The dynamics of the order parameters are determined
as usual

d

dt
Mj =

i

~
〈[~ΩiXi, Xj ]〉 = −cijkΩiMk = +cjikΩiMk = Ω×M (74)

The cross product above, “×”, is a simple way to write the result in terms of the structure constants.
This result can be represented elegantly in terms of the regular representation of the Lie algebra,

defined by

[Y,Xi] = Reg(Y ) ji Xj ⇒ Ṁ = Reg(Ω)M (75)
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The D×D matrix (D is the dimension of the Lie algebra) Reg(∗) is antisymmetric. Loss terms can
be put in by hand as before. The take the form of a diagonal matrix multiplying terms (Mi−Mi(∞)),
where Mi(∞) are the long term equilibrium values, usually externally imposed.

6 Systems Described by Two Lie Algebras

It is often useful to model two interacting quantum systems A and B by operators in two Lie algebras.
A very useful example is often used in laser physics, where one quantum system consists of N two-
level atoms, each described by spin operators σ(i)

z , σ
(i)
± , and the other quantum system consists of a

single mode of the electromagnetic field, the mode which is amplified to maser/laser action. This
field is represented by the number operator a†a and the creation and annihilation operators a† and
a.

In the general case we choose operators Xi, i = 1, 2, · · · , DA to model the properties of system
A and Yα, α, 1, 2 · · · , DB to model properties of system B. These operators have commutation
relations

[Xi, Xj ] = ic
(A)
ijkXk [Yα, Yβ ] = ic

(B)
αβγYγ [Xi, Yβ ] = 0 (76)

We take the hamiltonian as linear in the operators of the two subsystems A and B (usually just
a superposition of diagonal operators). The interaction terms is taken as simple as possible: bilinear
- linear in the operators of each of the systems:

H = AiXi +BαYα +MjβXjYβ (77)

The Ehrenfest equations of motion derived from this hamiltonian are:

d

dt
〈Xj〉 = −1

~
c
(A)
ijk 〈AiXk +MiαXkYα〉

d

dt
〈Yβ〉 = −1

~
c
(B)
αβγ〈BαYγ +MiαXiYγ〉

(78)

These equations cannot be solved without knowing about the expectation values of the bilinear
terms 〈XiYβ〉. An Ehrenfest result for these terms can be evaluated. It contains terms of the form
〈XiXjYα〉 and 〈XiYαYβ . The equations of motion for these terms can be sought. They involve
expectation values of products of four operators. Then 4→ 5 and 5→ 6, and so on up the ladder.
This insanity gives an infinite set of equations that are not closed.

Alternatively, we can cheat and assume as some point that the products of n1 + n2 operators
can be expressed as products of n1 operators multiplied by products of n2 operators: for example,
products involving n1 Xs and n2 Y s factor into two products, one involving only the X variables,
the other involving only the Y variables. This truncates the hierarchy of dynamical equations.

For example, if we assume this factorization can be effected in Eq. (78) above, then we find the
pair of nonlinear coupled evolution equations:

d

dt
〈Xj〉 = −1

~
c
(A)
ijk (Ai〈Xk〉+Miα〈Xk〉〈Yα〉)

d

dt
〈Yβ〉 = −1

~
c
(B)
αβγ (Bα〈Yγ〉+Miα〈Xi〉〈Yγ〉)

(79)
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While these truncated equations are a set of DA +DB coupled ordinary nonlinear dynamical equa-
tions to represent the evolution of the interacting systems A and B and are not easy to solve, they
are a lot simpler than the next level in this hierarchy of rapidly increasing dimensional dynamical
systems. These equations alone exhibit fascinating evolution possibilities, as witnessed, for example,
by the complexity of the Lorenz equations, which have only two bilinear coupling terms.

7 Conclusion
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