Lie Groups, Physics and Geometry

Robert Gilmore

Many years ago I wrote the book Lie Groups, Lie Algebras, and Some of Their Applications (NY: Wiley, 1974). That was a big book: long and difficult. Over the course of the years I realized that more than 90% of the most useful material in that book could be presented in less than 10% of the space. This realization was accompanied by a promise that some day I would do just that - rewrite and shrink the book to emphasize the most useful aspects in a way that was easy for students to acquire and to assimilate. The present work is the fruit of this promise.

In carrying out the revision I've created a sandwich. Lie group theory has its intellectual underpinnings in Galois theory. In fact, the original purpose of what we now call Lie group theory was to use continuous groups to solve differential (continuous) equations in the spirit that finite groups had been used to solve algebraic (finite) equations. It is rare that a book dedicated to Lie groups begins with Galois groups and includes a chapter dedicated to the applications of Lie group theory to solving differential equations. This book does just that. The first chapter describes Galois theory, and the last chapter shows how to use Lie theory to solve some ordinary differential equations. The fourteen intermediate chapters describe many of the most important aspects of Lie group theory and provide applications of this beautiful subject to several important areas of physics and geometry.

Over the years I have profitted from the interaction with many students through comments, criticism, and suggestions for new material or different approaches to old. Three students who have contributed enormously during the past few years are Dr. Jairzinho Ramos-Medina, who worked with me on Chapter 15 (Maxwell's Equations), and Daniel J. Cross and Timothy Jones, who aided this computer illiterate with much moral and ebit ether support. Finally, I thank my beautiful wife Claire for her gracious patience and understanding throughout this long creation process.

Contents

1 Introduction page 1
1.1 The Program of Lie 1
1.2 A Result of Galois 3
1.3 Group Theory Background 4
1.4 Approach to Solving Polynomial Equations 9
1.5 Solution of the Quadratic Equation 10
1.6 Solution of the Cubic Equation 12
1.7 Solution of the Quartic Equation 15
1.8 The Quintic Cannot be Solved 18
1.9 Example 19
1.10 Conclusion 22
1.11 Problems 23
2 Lie Groups 25
2.1 Algebraic Properties 25
2.2 Topological Properties 27
2.3 Unification of Algebra and Topology 29
2.4 Unexpected Simplification 31
2.5 Conclusion 31
2.6 Problems 32
3 Matrix Groups 37
3.1 Preliminaries 37
3.2 No Constraints 39
3.3 Linear Constraints 39
3.4 Bilinear and Quadratic Constraints 42
3.5 Multilinear Constraints 46
3.6 Intersections of Groups 46
3.7 Embedded Groups 47
3.8 Modular Groups 48
3.9 Conclusion 50
3.10 Problems 50
4 Lie Algebras 61
4.1 Why Bother? 61
4.2 How to Linearize a Lie Group 63
4.3 Inversion of the Linearization Map: EXP 64
4.4 Properties of a Lie Algebra 66
4.5 Structure Constants 68
4.6 Regular Representation 69
4.7 Structure of a Lie Algebra 70
4.8 Inner Product 71
4.9 Invariant Metric and Measure on a Lie Group 74
4.10 Conclusion 76
4.11 Problems 76
5 Matrix Algebras 82
5.1 Preliminaries 82
5.2 No Constraints 83
5.3 Linear Constraints 83
5.4 Bilinear and Quadratic Constraints 86
5.5 Multilinear Constraints 89
5.6 Intersections of Groups 89
5.7 Algebras of Embedded Groups 90
5.8 Modular Groups 91
5.9 Basis Vectors 91
5.10 Conclusion 93
5.11 Problems 93
6 Operator Algebras 98
6.1 Boson Operator Algebras 98
6.2 Fermion Operator Algebras 99
6.3 First Order Differential Operator Algebras 100
6.4 Conclusion 103
6.5 Problems 104
$7 \quad$ EXPonentiation 110
7.1 Preliminaries 110
7.2 The Covering Problem 111
7.3 The Isomorphism Problem and the Covering Group 116
7.4 The Parameterization Problem and BCH Formulas 121
7.5 EXPonentials and Physics 127
7.5.1 Dynamics 127
7.5.2 Equilibrium Thermodynamics 129
7.6 Conclusion 132
7.7 Problems 133
8 Structure Theory for Lie Algebras 145
8.1 Regular Representation 145
8.2 Some Standard Forms for the Regular Representation 146
8.3 What These Forms Mean 149
8.4 How to Make This Decomposition 152
8.5 An Example 153
8.6 Conclusion 154
8.7 Problems 154
9 Structure Theory for Simple Lie Algebras 157
9.1 Objectives of This Program 157
9.2 Eigenoperator Decomposition - Secular Equation 158
9.3 Rank 161
9.4 Invariant Operators 161
9.5 Regular Elements 164
9.6 Semisimple Lie algebras 166
9.6.1 Rank 166
9.6.2 Properties of Roots 166
9.6.3 Structure Constants 168
9.6.4 Root Reflections 169
9.7 Canonical Commutation Relations 169
9.8 Conclusion 171
9.9 Problems 173
10 Root Spaces and Dynkin Diagrams 179
10.1 Properties of Roots 179
10.2 Root Space Diagrams 181
10.3 Dynkin Diagrams 185
10.4 Conclusion 189
10.5 Problems 191
11 Real Forms 194
11.1 Preliminaries 194
11.2 Compact and Least Compact Real Forms 197
11.3 Cartan's Procedure for Constructing Real Forms 199
11.4 Real Forms of Simple Matrix Lie Algebras 200
11.4.1 Block Matrix Decomposition 201
11.4.2 Subfield Restriction 201
11.4.3 Field Embeddings 204
11.5 Results 204
11.6 Conclusion 205
11.7 Problems 206
12 Riemannian Symmetric Spaces 213
12.1 Brief Review 213
12.2 Globally Symmetric Spaces 215
12.3 Rank 216
12.4 Riemannian Symmetric Spaces 217
12.5 Metric and Measure 218
12.6 Applications and Examples 219
12.7 Pseudo Riemannian Symmetic Spaces 222
12.8 Conclusion 223
12.9 Problems 224
13 Contraction 232
13.1 Preliminaries 233
13.2 Inönü-Wigner Contractions 233
13.3 Simple Examples of Inönü-Wigner Contractions 234
13.3.1 The Contraction $S O(3) \rightarrow I S O(2)$ 234
13.3.2 The Contraction $S O(4) \rightarrow I S O(3)$ 235
13.3.3 The Contraction $S O(4,1) \rightarrow I S O(3,1)$ 237
13.4 The Contraction $U(2) \rightarrow H_{4}$ 239
13.4.1 Contraction of the Algebra 239
13.4.2 Contraction of the Casimir Operators 240
13.4.3 Contraction of the Parameter Space 240
13.4.4 Contraction of Representations 241
13.4.5 Contraction of Basis States 241
13.4.6 Contraction of Matrix Elements 242
13.4.7 Contraction of BCH Formulas 242
13.4.8 Contraction of Special Functions 243
13.5 Conclusion 244
13.6 Problems 245
14 Hydrogenic Atoms 250
14.1 Introduction 251
14.2 Two Important Principals of Physics 252
14.3 The Wave Equations 253
14.4 Quantization Conditions 254
14.5 Geometric Symmetry $S O(3)$ 257
14.6 Dynamical Symmetry $S O(4)$ 261
14.7 Relation With Dynamics in Four Dimensions 264
14.8 DeSitter Symmetry $S O(4,1)$ 266
14.9 Conformal Symmetry $S O(4,2)$ 270
14.9.1 Schwinger Representation 270
14.9.2 Dynamical Mappings 271
14.9.3 Lie Algebra of Physical Operators 274
14.10 Spin Angular Momentum 275
14.11 Spectrum Generating Group 277
14.11.1 Bound States 278
14.11.2 Scattering States 279
14.11.3 Quantum Defect 280
14.12 Conclusion 281
14.13 Problems 282
15 Maxwell's Equations 293
15.1 Introduction 294
15.2 Review of the Inhomogeneous Lorentz Group 295
15.2.1 Homogeneous Lorentz Group 295
15.2.2 Inhomogeneous Lorentz Group 296
15.3 Subgroups and Their Representations 296
15.3.1 Translations $\{I, a\}$ 297
15.3.2 Homogeneous Lorentz Transformations 297
15.3.3 Representations of $S O(3,1)$ 298
15.4 Representations of the Poincaré Group 299
15.4.1 Manifestly Covariant Representations 299
15.4.2 Unitary Irreducible Representations 300
15.5 Transformation Properties 305
15.6 Maxwell's Equations 308
15.7 Conclusion 309
15.8 Problems 310
16 Lie Groups and Differential Equations 320
16.1 The Simplest Case 322
16.2 First Order Equations 323
16.2.1 One Parameter Group 323
16.2.2 First Prolongation 323
16.2.3 Determining Equation 324
16.2.4 New Coordinates 325
16.2.5 Surface and Constraint Equations 326
16.2.6 Solution in New Coordinates 327
16.2.7 Solution in Original Coordinates 327
16.3 An Example 327
16.4 Additional Insights 332
16.4.1 Other Equations, Same Symmetry 332
16.4.2 Higher Degree Equations 333
16.4.3 Other Symmetries 333
16.4.4 Second Order Equations 333
16.4.5 Reduction of Order 335
16.4.6 Higher Order Equations 336
16.4.7 Partial Differential Equations: Laplace's Equation 337
16.4.8 Partial Differential Equations: Heat Equation338
16.4.9 Closing Remarks 338
16.5 Conclusion 339
16.6 Problems 341
Bibliography 347
Index 351

