Lie Groups, Physics and Geometry

Robert Gilmore

Many years ago I wrote the book *Lie Groups, Lie Algebras, and Some* of *Their Applications* (NY: Wiley, 1974). That was a big book: long and difficult. Over the course of the years I realized that more than 90% of the most useful material in that book could be presented in less than 10% of the space. This realization was accompanied by a promise that some day I would do just that — rewrite and shrink the book to emphasize the most useful aspects in a way that was easy for students to acquire and to assimilate. The present work is the fruit of this promise.

In carrying out the revision I've created a sandwich. Lie group theory has its intellectual underpinnings in Galois theory. In fact, the original purpose of what we now call Lie group theory was to use continuous groups to solve differential (continuous) equations in the spirit that finite groups had been used to solve algebraic (finite) equations. It is rare that a book dedicated to Lie groups begins with Galois groups and includes a chapter dedicated to the applications of Lie group theory to solving differential equations. This book does just that. The first chapter describes Galois theory, and the last chapter shows how to use Lie theory to solve some ordinary differential equations. The fourteen intermediate chapters describe many of the most important aspects of Lie group theory and provide applications of this beautiful subject to several important areas of physics and geometry.

Over the years I have profitted from the interaction with many students through comments, criticism, and suggestions for new material or different approaches to old. Three students who have contributed enormously during the past few years are Dr. Jairzinho Ramos-Medina, who worked with me on Chapter 15 (Maxwell's Equations), and Daniel J. Cross and Timothy Jones, who aided this computer illiterate with much moral and ebit ether support. Finally, I thank my beautiful wife Claire for her gracious patience and understanding throughout this long creation process.

Contents

1	Intr	page 1	
	1.1	The Program of Lie	1
	1.2	A Result of Galois	3
	1.3	Group Theory Background	4
	1.4	Approach to Solving Polynomial Equations	9
	1.5	Solution of the Quadratic Equation	10
	1.6	Solution of the Cubic Equation	12
	1.7	Solution of the Quartic Equation	15
	1.8	The Quintic Cannot be Solved	18
	1.9	Example	19
	1.10	Conclusion	22
	1.11	Problems	23
2	Lie	Groups	25
	2.1	Algebraic Properties	25
	2.2	Topological Properties	27
	2.3	Unification of Algebra and Topology	29
	2.4	Unexpected Simplification	31
	2.5	Conclusion	31
	2.6	Problems	32
3	Matrix Groups		37
	3.1	Preliminaries	37
	3.2	No Constraints	39
	3.3	Linear Constraints	39
	3.4	Bilinear and Quadratic Constraints	42
	3.5	Multilinear Constraints	46
	3.6	Intersections of Groups	46
	3.7	Embedded Groups	47

iv

		Contents	v
	3.8	Modular Groups	48
	3.9	Conclusion	50
	3.10	Problems	50
4	Lie	Algebras	61
	4.1	Why Bother?	61
	4.2	How to Linearize a Lie Group	63
	4.3	Inversion of the Linearization Map: EXP	64
	4.4	Properties of a Lie Algebra	66
	4.5	Structure Constants	68
	4.6	Regular Representation	69
	4.7	Structure of a Lie Algebra	70
	4.8	Inner Product	71
	4.9	Invariant Metric and Measure on a Lie Group	74
	4.10	Conclusion	76
	4.11	Problems	76
5	Mat	rix Algebras	82
	5.1	Preliminaries	82
	5.2	No Constraints	83
	5.3	Linear Constraints	83
	5.4	Bilinear and Quadratic Constraints	86
	5.5	Multilinear Constraints	89
	5.6	Intersections of Groups	89
	5.7	Algebras of Embedded Groups	90
	5.8	Modular Groups	91
	5.9	Basis Vectors	91
	5.10	Conclusion	93
	5.11	Problems	93
6	Ope	rator Algebras	98
	6.1	Boson Operator Algebras	98
	6.2	Fermion Operator Algebras	99
	6.3	First Order Differential Operator Algebras	100
	6.4	Conclusion	103
	6.5	Problems	104
7	EXI	Ponentiation	110
	7.1	Preliminaries	110
	7.2	The Covering Problem	111
	7.3	The Isomorphism Problem and the Covering Group	116
	7.4	The Parameterization Problem and BCH Formulas	121
	7.5	EXPonentials and Physics	127

vi	Contents		
		7.5.1 Dynamics	127
		7.5.2 Equilibrium Thermodynamics	129
	7.6	Conclusion	132
	7.7	Problems	133
8	\mathbf{Str}	ucture Theory for Lie Algebras	145
	8.1	Regular Representation	145
	8.2	Some Standard Forms for the Regular Representation	5n146
	8.3	What These Forms Mean	149
	8.4	How to Make This Decomposition	152
	8.5	An Example	153
	8.6	Conclusion	154
	8.7	Problems	154
9	\mathbf{Str}	ucture Theory for Simple Lie Algebras	157
	9.1	Objectives of This Program	157
	9.2	Eigenoperator Decomposition – Secular Equation	158
	9.3	Rank	161
	9.4	Invariant Operators	161
	9.5	Regular Elements	164
	9.6	Semisimple Lie algebras	166
		9.6.1 Rank	166
		9.6.2 Properties of Roots	166
		9.6.3 Structure Constants	168
		9.6.4 Root Reflections	169
	9.7	Canonical Commutation Relations	169
	9.8	Conclusion	171
	9.9	Problems	173
10	Roo	ot Spaces and Dynkin Diagrams	179
	10.1	Properties of Roots	179
	10.2	Root Space Diagrams	181
	10.3	Dynkin Diagrams	185
	10.4	Conclusion	189
	10.5	Problems	191
11	Rea	al Forms	194
	11.1	Preliminaries	194
	11.2	Compact and Least Compact Real Forms	197
	11.3	Cartan's Procedure for Constructing Real Forms	199
	11.4	Real Forms of Simple Matrix Lie Algebras	200
		11.4.1 Block Matrix Decomposition	201
		11.4.2 Subfield Restriction	201

vi

	Contents			
		11.4.3 Field Embeddings	204	
	11.5	Results	204	
	11.6	Conclusion	205	
	11.7	Problems	206	
12	Rie	mannian Symmetric Spaces	213	
	12.1	Brief Review	213	
	12.2	Globally Symmetric Spaces	215	
	12.3	Rank	216	
	12.4	Riemannian Symmetric Spaces	217	
	12.5	Metric and Measure	218	
	12.6	Applications and Examples	219	
	12.7	Pseudo Riemannian Symmetic Spaces	222	
	12.8	Conclusion	223	
	12.9	Problems	224	
13	Cont	traction	232	
	13.1	Preliminaries	233	
	13.2	Inönü–Wigner Contractions	233	
	13.3	Simple Examples of Inönü–Wigner Contractions	234	
		13.3.1 The Contraction $SO(3) \rightarrow ISO(2)$	234	
		13.3.2 The Contraction $SO(4) \rightarrow ISO(3)$	235	
		13.3.3 The Contraction $SO(4,1) \rightarrow ISO(3,1)$	237	
	13.4	The Contraction $U(2) \to H_4$	239	
		13.4.1 Contraction of the Algebra	239	
		13.4.2 Contraction of the Casimir Operators	240	
		13.4.3 Contraction of the Parameter Space	240	
		13.4.4 Contraction of Representations	241	
		13.4.5 Contraction of Basis States	241	
		13.4.6 Contraction of Matrix Elements	242	
		13.4.7 Contraction of BCH Formulas	242	
		13.4.8 Contraction of Special Functions	243	
	13.5	Conclusion	244	
	13.6	Problems	245	
14	Hyo	drogenic Atoms	250	
	14.1	Introduction	251	
	14.2	Two Important Principals of Physics	252	
	14.3	The Wave Equations	253	
	14.4	Quantization Conditions	254	
	14.5	Geometric Symmetry $SO(3)$	257	
	14.6	Dynamical Symmetry $SO(4)$	261	

Contents

	14.7	Relatio	on With Dynamics in Four Dimensions	264
	14.8	DeSitte	er Symmetry $SO(4,1)$	266
	14.9	Confor	mal Symmetry $SO(4,2)$	270
		14.9.1	Schwinger Representation	270
		14.9.2	Dynamical Mappings	271
		14.9.3	Lie Algebra of Physical Operators	274
	14.10	Spin A	Angular Momentum	275
	14.11	Spectr	rum Generating Group	277
		14.11.1	Bound States	278
		14.11.2	Scattering States	279
		14.11.3	Quantum Defect	280
	14.12	Conclu	usion	281
	14.13	Proble	ems	282
15	Max	well's E	quations	293
	15.1	Introdu	ction	294
	15.2	Review	of the Inhomogeneous Lorentz Group	295
		15.2.1	Homogeneous Lorentz Group	295
		15.2.2	Inhomogeneous Lorentz Group	296
	15.3	Subgrou	ups and Their Representations	296
		15.3.1	Translations $\{I, a\}$	297
		15.3.2	Homogeneous Lorentz Transformations	297
		15.3.3	Representations of $SO(3,1)$	298
	15.4	Represe	entations of the Poincaré Group	299
		15.4.1	Manifestly Covariant Representations	299
		15.4.2	Unitary Irreducible Representations	300
	15.5	Transfo	rmation Properties	305
	15.6	Maxwell's Equations		
	15.7	Conclus	sion	309
	15.8	Problem	ns	310
16	Lie	Groups a	and Differential Equations	320
	16.1		nplest Case	322
	16.2	First O	rder Equations	323
		16.2.1	One Parameter Group	323
		16.2.2	First Prolongation	323
		16.2.3	Determining Equation	324
		16.2.4	New Coordinates	325
		16.2.5	Surface and Constraint Equations	326
		16.2.6	Solution in New Coordinates	327
		16.2.7	Solution in Original Coordinates	327

viii

		Contents	ix
16.3	3 An Example		
16.4	Additional Insights		
	16.4.1	Other Equations, Same Symmetry	332
	16.4.2	Higher Degree Equations	333
	16.4.3	Other Symmetries	333
	16.4.4	Second Order Equations	333
	16.4.5	Reduction of Order	335
	16.4.6	Higher Order Equations	336
	16.4.7	Partial Differential Equations: Laplace	e's
Equation		337	
	16.4.8	Partial Differential Equations: Heat Eq	uation338
	16.4.9	Closing Remarks	338
16.5 Conclusion		sion	339
16.6	Problem	ms	341
Bibliography			347
Index			351