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In the classification of the real forms of the simple Lie algebras we en-
countered subspaces p, ip on which the Cartan-Killing inner product was
negative-definite (on p) or positive-definite (on ip). In either case these
subspaces exponentiate onto algebraic manifolds on which the invariant
metric gij is definite, either negative or positive. Manifolds with a defi-
nite metric are Riemannian spaces. These spaces are also globally sym-
metric in the sense that every point looks like every other point — because
each point in the space EXP (p) or EXP (ip) is the image of the origin
under some group operation. We briefly discuss the properties of these
Riemannian globally symmetric spaces in this chapter.

12.1 Brief Review

In the discussion of the group SL(2;R) we encountered three symmet-

ric spaces. These were S2 ∼ SU(2)/U(1), which is compact, and its

dual H2
2+ = SL(2;R)/ SO(2) = SU(1, 1)/U(1), which is the upper

sheet of the two-sheeted hyperboloid. ‘Between’ these two spaces oc-

curs H2
1 = SL(2;R)/SO(1, 1), which is the single-sheeted hyperboloid.

These spaces are shown in Fig. 12.1.

The Cartan-Killing inner product in the linear vector subspace su(2)−
u(1) is negative definite. This is mapped, under the EXPonential func-
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214 Riemannian Symmetric Spaces

Fig. 12.1. S2 = SO(3)/SO(2) = SU(2)/U(1), H2
2+ = SO(2, 1)/SO(2) =

SU(1, 1)/U(1), H2
1 = SO(2, 1)/SO(1, 1) = SL(2; R)/SO(1, 1). The first two

are Riemannian symmetric spaces, the third is a pseudo-Riemannian symmet-
ric space.

tion, to the Cartan-Killing metric on the space SU(2)/U(1) ∼ S2, the

sphere. On S2 the Cartan-Killing metric is negative-definite. We may

just as well take it as positive definite. Under this metric the sphere

becomes a Riemannian manifold since there is a metric on it with which

to measure distances.

The Cartan-Killing inner product on su(1, 1)− u(1) ≃ sl(2;R)− so(2)

is positive definite. It maps to a positive-definite metric on H2
2+ =

SU(1, 1)/SO(2). The upper sheet of the two-sheeted hyperboloid is

topologically equivalent to the flat space R2 but geometrically it is not:

it has intrinsic curvature that can be computed, via its Cartan-Killing

metric and the curvature tensor derived from it.
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The most interesting of these spaces is the single-sheeted hyperboloid

H2
1 . It is obtained by exponentiating su(1, 1) − so(1, 1). The Cartan-

Killing inner product in this linear vector space is indefinite. There-

fore the Cartan-Killing metric on the topological space EXP [su(1, 1)−
so(1, 1)] = SU(1, 1)/SO(1, 1) is indefinite. The space is a pseudo-

Riemannian manifold. In addition it is multiply connected.

12.2 Globally Symmetric Spaces

The three cases for A1 reviewed in the previous section serve as a model

for the description of all other Riemannian symmetric spaces. For a

compact simple Lie algebra g [i.e. so(n), su(n), sp(n)] the Cartan de-

compositions have the form (11.10)

g = h + p (p, p) < 0

g′ = h + ip (ip, ip) > 0
(12.1)

On the linear vector space p (ip) the Cartan-Killing inner product is neg-

ative (positive) definite. On the topological spaces EXP (p) [EXP (ip)]

the Cartan-Killing metric is negative (positive) definite also:

G/H = EXP (p) ds2 = gµ,ν dx
µdxν < 0

G′/H = EXP (ip) ds2 = gµ,ν dx
µdxν > 0

(12.2)

In either case, the metric is definite and defines a Riemannian space.

This space is globally symmetric. That is, every point ‘looks like’ every

other point. This is because they all look like the identity EXP (0), since

the identity and its neighborhood can be shifted to any other point in the

space by multiplication by the appropriate group operation [for example,

by EXP (p) or EXP (ip)].

The space P = G/H = EXP (p) (e.g. S2) is compact. The exponen-

tial of a straight line through the origin in p returns periodically to the

neighborhood of the identity. The space P is not topologically equivalent

to any Euclidean space, in which a straight line (geodesic) through the

origin never returns to the origin. The space P may be simply connected

or multiply connected.

The space P ′ = G′/H = EXP (ip) (i.e. H2
2+) is noncompact. The

exponential of a straight line through the origin in ip [a geodesic through

the identity in EXP (ip)] simply goes away from this point without ever

returning. The space P ′ = EXP (ip) is topologically equivalent to a

Euclidean space Rn, where n = dim ip. Geometrically it is not Euclidean

since it has nonzero curvature. This space is simply connected.
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The Riemannian spaces P = EXP (p) and P ′ = EXP (ip) are sym-

metric but not isotropic unless the rank of the space is 1, as it is for S2

and H2
2+.

If g is simple with a Cartan decomposition of the form g = k+p, with

standard commutation relations [k, k] ⊆ k, [k, p] ⊆ p, and [p, p] ⊆ k, the

quotient coset P = G/K is a globally symmetric space as every point

“lookslike” every other point.

12.3 Rank

Rank for a symmetric space can be defined in exactly the same way as

rank for a Lie group or a Lie algebra. This shouldn’t be surprising, as

a symmetric space consists of points (coset representatives P = G/H or

P ′ = G′/H) in the Lie group.

To compute the rank of a symmetric space one starts from the secular

equation for the associated algebra g = h + p

‖ Reg(h + p) − λIn ‖=
n

∑

j=0

(−λ)n−jφj(h, p) (12.3)

and restricts to the subspace p. Calculation of the rank can be car-

ried out in any faithful matrix representation, for example the defin-

ing n × n matrix representation. The secular equations for the spaces

SO(p, q)/SO(p) × SO(q), SU(p, q)/S[U(p) × U(q)], Sp(p, q)/Sp(p) ×
Sp(q) are

∣

∣

∣

∣

∣

∣

∣

∣

[

0 B

B† 0

]

− λIp+q

∣

∣

∣

∣

∣

∣

∣

∣

=

n=p+q
∑

j=0

(−λ)n−jφj(B,B†) (12.4)

It is easy to check that the function φj depends on the q×q matrix B†B

or the p× p matrix BB†, whichever is smaller. The rank of these spaces

is min(p, q).

For Riemannian globally symmetric spaces the rank is (cf. Sec. 10.1):

(i) The number of independent functions in the secular equation;

(ii) The number of independent roots of the secular equation;

(iii) The maximal number of mutually commuting operators in the

subspace p or p′;

(iv) The number of invariant (Laplace-Beltrami) operators defined

over the space P (P ′);
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Table 12.1. All classical noncompact Riemannian symmetric spaces.

Root Quotient G′/H Dimension P Rank P
Space
Ap+q−1 SU(p, q)/S [U(p) ⊗ U(q)] 2pq min(p, q)
An−1 SL(n; R)/SO(n) 1

2
(n + 2)(n − 1) n − 1

A2n−1 SU∗(2n)/USp(2n) (2n + 1)(n − 1) n − 1
Bp+q SO(p, q)/SO(p) ⊗ SO(q) pq min(p, q)
Dp+q SO(p, q)/SO(p) ⊗ SO(q) pq min(p, q)
Dn SO∗(2n)/U(n) n(n − 1) [n/2]
Cp+q USp(2p, 2q)/USp(2p) ⊗ USp(2q) 4pq min(p, q)
Cn Sp(2n; R)/U(n) n(n + 1) n

(v) The dimension of a positive-definite root space that can be used

to define diagrammatically the properties of these spaces (Araki-

Satake root diagrams);

(vi) The number of distinct, nonisotropic directions;

(vii) The dimension of the largest Euclidean submanifold in P .

We will not elaborate on these points here. We mention briefly that

the Laplace-Beltrami operators on P = G/H are the Casimir operators

of its parent group G, restricted to the subspace P . The number of non-

isotropic directions is determined by computing the number of distinct

eigenvalues of the Cartan-Killing metric on P , or equivalently and more

easily, of the Cartan-Killing inner product on p (same as the metric at

the identity). In each of the spaces P there is a Euclidean subspace

(submanifold). For S2, any great circle is Euclidean.

12.4 Riemannian Symmetric Spaces

Table 12.1 lists all the classical noncompact Riemannian symmetric

spaces of the form G′/H , where G′ is simple and noncompact and H

is the maximal compact subgroup in G′. To each there is a compact

real form under G′/H → G/H . For example, SO(p, q)/SO(p) ⊗ SO(q)

and SO(p + q)/SO(p) ⊗ SO(q) are dual. These spaces are classical be-

cause they involve the classical series of Lie groups: the orthogonal, the

unitary, and the symplectic.

Table 12.2 lists all the exceptional noncompact Riemannian symmetric

spaces. As before, to each there is a dual compact real form.
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Table 12.2. All exceptional noncompact Riemannian symmetric spaces.

Root G′/H Dim G′ Dim H Dim P Rank P
Space
G2 G2(+2)/(A1 ⊕ A1) 14 6 8 2
F4 F4(−20)/B4 52 36 16 1

F4(+4)/(C3 ⊕ A1) 52 24 28 4
E6 E6(−26)/F4 78 52 26 2

E6(−14)/(D5 ⊕ D1) 78 46 32 2
E6(+2)/(A5 ⊕ A1) 78 38 40 4

E6(+6)/C4 78 36 42 6
E7 E7(−25)/(E6 ⊕ D1) 133 79 54 3

E7(−5)/(D6 ⊕ A1) 133 69 64 4
E7(+7)/A7 133 63 70 7

E8 E8(−24)/(E7 ⊕ A1) 248 136 112 4
E8(+8)/D8 248 120 128 8

12.5 Metric and Measure

The metric tensor on the spaces P , P ′ is computed by defining a metric

at the identity and then moving it elsewhere by group multiplication.

The metric at the identity is chosen as the Cartan-Killing inner product

on ip, or its negative on p.

If dx(Id) are infinitesimal displacements at the Identity that are trans-

lated to infinitesimal displacements dx(p) at point p, then these two sets

of infinitesimals are linearly related by a nonsingular linear transforma-

tion [cf. (4.44)]

dxi(Id) = M i
µ dx

µ(p) (12.5)

The metrics and invariant volume elements are related by [cf. (4.47) and

(4.49)]

ds2 = gij(Id)dx
i(Id)dxj(Id)

= gµν(p)dx
µ(p)dxν(p)

⇒ gµν(p) = gij(Id)M
i
µM

j
ν

dV = ρ(Id)dx1(Id) ∧ dx2(Id) ∧ · · · ∧ dxn(Id)

= ρ(p)dx1(p) ∧ dx2(p) ∧ · · · ∧ dxn(p)

⇒ ρ(p) =‖M(p) ‖ ρ(Id) ∼
√

det g(p)

(12.6)

The matrix M i
µ(p) is not easy to compute in general. For the rank-1

spaces SO(n, 1)/SO(n), SU(n, 1)/U(n), Sp(n, 1)/Sp(n)×Sp(1) defined
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by

P ′ =

[

W X

X† Y

]

W 2 = In +XX†

Y 2 = 1 +X†X

X =











x1

x2

...

xn











(12.7)

the matrix M i
µ(X) is determined from

dx(X) = Wdx(Id) (12.8)

The matrix M i
µ(X) is given by W−1. Since the Cartan-Killing inner

product is In at the identity, we find

gµν(X) = W−1InW
−1 =

{

In +XX†
}−1

µν

ρ(X) = ‖W ‖−1 = 1/
√

1 +X†X = Y −1

(12.9)

12.6 Applications and Examples

The coset representatives for the Riemannian symmetric spaces SO(2, 1)/SO(2)

and SO(3)/SO(2) are

SO(2, 1)/SO(2) SO(3)/SO(2)
[

W X

+Xt Y

] [

W X

−Xt Y

]

W 2 = I2 +

(

x

y

)

(

x y
)

W 2 = I2 −
(

x

y

)

(

x y
)

Y 2 = I1 +
(

x y
)

(

x

y

)

Y 2 = I1 −
(

x y
)

(

x

y

)

(12.10)

From these coset representatives we can compute the metric tensors on

the noncompact hyperboloid H2
2 = SO(2, 1)/ SO(2) and the compact

sphere S2 = SO(3)/SO(2). The metric tensors in the two cases are the

2 × 2 matrices
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SO(2, 1)/SO(2) SO(3)/SO(2)

g∗,∗ = W−2 =

[

I2 +

(

x

y

)

(

x y
)

]−1

g∗,∗ = W−2 =

[

I2 −
(

x

y

)

(

x y
)

]−1

g∗,∗ = W+2 =

[

1 + x2 +xy

+yx 1 + y2

]

g∗,∗ = W+2 =

[

1 − x2 −xy
−yx 1 − y2

]

(12.11)

The noncompact Riemannian symmetric space H2
2 = SO(2, 1)/SO(2) is

parameterized by the entire x-y plane while its dual compact Rieman-

nian symmetric space SO(2+1)/SO(2) is parameterized by the interior

of the unit circle Y 2 = 1 − (x2 + y2) ≥ 0.

Since the (intrinsic) properties of the Riemannian symmetric space

are entirely encoded in its metric tensor, we can begin to compute its

important properties, for example, the curvature tensor. It is first useful

to compute the Christoffel symbols as a way-station on the road to com-

puting the full Riemannian curvature tensor. The Christoffel symbols

(not a tensor!), the Riemannian curvature tensor, the Ricci tensor, and

the curvature scalars are constructed in terms of the metric tensor as

follows:

Christoffel : Γσµν =
1

2
gσα

(

∂gµα
∂xν

+
∂gνα
∂xµ

− ∂gµν
∂xα

)

Riemann C. T. : Rµσ,αβ =
∂Γµσβ
∂xα

− ∂Γµσα
∂xβ

+ ΓµραΓρσβ − ΓµρβΓ
ρ
σα

Ricci Tensor : Rσβ = Rµσ,µβ

Curvature Scalar : R = gσβRσβ
(12.12)

In general, computing these objects is not an easy task. This task

is greatly simplified in a symmetric space, for all points look the same

and we can compute the tensors wherever the computation is easiest.

This turns out to be at the origin. We illustrate by carrying out the

computations in the neighborhood of the identity for the compact case,

the sphere. Instead of using the pair x, y as coordinates, we use in-



12.6 Applications and Examples 221

dexed coordinates xi, i = 1, 2 · · · , N , and set N = 2 at the end of this

computation.

We first note that it is sufficient to estimate the behavior of the metric

tensor in the neighborhood of the origin (identity in the coset) only up

to quadratic terms, so that

gij = W−2 =
[

IN −XXt
]−1

ij
≃

[

IN +XXt
]

ij
→ δij + xixj (12.13)

The inverse (contravariant metric) is gij ≃ δij − xixj , but we will not

need this result. In the neighborhood of the identity (gij → δij)

Γσµν → 1

2

(

∂gµσ
∂xν

+
∂gνσ
∂xµ

− ∂gµν
∂xσ

)

= 1
2

{

δνµx
σ + δµνx

σ − δσµx
ν

δνσx
µ + δµσx

ν − δσνx
µ

}

→ δµνx
σ (→ 0 at origin)

(12.14)

Computation of the components of the Riemann curvature tensor at

the orign is even simpler. At the origin the components of the Christoffel

symbols all vanish, so it is sufficient to retain only the first two terms in

the expression for the curvature tensor. We find

Rµσ,αβ → ∂

∂xα
(δσβx

µ) − ∂

∂xβ
(δσαx

µ) = δσβδ
µ

α − δσαδ
µ

β (12.15)

The contravariant index µ can be lowered with the metric tensor, which

is the delta function at the origin, and the resulting fully covariant metric

tensor Rµσ,αβ = δαµδβσ − δασδβµ exhibits the full spectrum of expected

symmetries.

The Ricci tensor is obtained by contraction

Rσβ = Rµσ,µβ = δσβδµµ − δσµδβµ = Nδσβ − δσβ (12.16)

The curvature scalar is obtained from the Ricci tensor by saturating its

covariant indices by the contravariant components of the metric tensor,

which is simply a delta function at the origin:

R = gσβRσβ → δσβ(N − 1)δσβ = N(N − 1) (12.17)

For N = 2 (sphere S2), R = 2.
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The computation can be carried out just as easily for the noncompact

space H2
2 . The major change occurs in the first step, where the metric

in the neighborhood of the origin undergoes the change

SO(2 + 1)/SO(2) SO(2, 1)/SO(2)

gij → δij + xixj → gij → δij − xixj
(12.18)

The net result is that a negative sign attaches itself at each step in the

computation: for example Γσµν → −δµνxσ. The end result for H2
2 is that

R = −2.

12.7 Pseudo Riemannian Symmetic Spaces

Topological spaces on which a ‘metric tensor’ can be defined that is

neither positive definite (ds2 = gµν dx
µdxν > 0, equality ⇒ dx = 0)

nor negative-definite (ds2 < 0), but which is nonsingular (‖ g ‖6= 0)

are called pseudo Riemannian spaces. Pseudo Riemannian spaces

that are globally symmetric can be constructed following the procedures

described in Sections 12.1 and 12.2. As the example of the single sheeted

hyperboloid H2
1 shows, these spaces are even more interesting than the

Riemannian globally symmetric spaces.

To make these statements more explicit, assume a Lie algebra g′′ (non-

compact) has a decomposition

g′′ = h′′ + p′′ (12.19)

with commutation relations of the form (11.10)

[h′′, h′′] ⊆ h′′

[h′′, p′′] ⊆ p′′ (12.20)

[p′′, p′′] ⊆ h′′

Then h′′ and p′′ are orthogonal subspaces in g′′ under the Cartan-Killing

inner product. Assume also that the inner product is indefinite on p′′

(also h′′). Then

P ′′ = EXP (p′′) = G′′/H ′′ (12.21)

is a pseudo-Riemannian globally symmetric space. The metric on this

space is indefinite. The space is curved and typically multiply connected.

The space H ′′ = EXP (h′′) is also an interesting pseudo Riemannian

symmetric space.
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All of the algebraic properties associated with a Riemannian symmet-

ric space hold also for pseudo Riemannian symmetric spaces. That is,

rank can be defined, and carries most of the implications listed in Section

12.3.

There is a systematic method for constructing pseudo Riemannian

symmetric spaces. Begin with a compact simple Lie algebra g and sup-

pose T1, T2 are two metric-preserving mappings of the Lie algebra onto

itself that obey T 2
1 = I, T 2

2 = I (cf. Section 11.3) and T1 6= T2. Define

the eigenspaces of g under T1, T2 as g±,±:

T1 g±,∗ = ±g±,∗

T2 g∗,± = ±g∗,± (12.22)

Then T1 can be used to construct a noncompact algebra

g′ = (g+,+ + g+,−) + i(g−,+ + g−,−) (12.23)

and T2 can be used to split g′ in a different way

g′′ = (g+,+ + ig+,−) + (ig−,+ + g−,−)

= h′′ + p′′
(12.24)

The subspaces h′′, p′′ obey commutation relations (12.20). The Cartan-

Killing inner product is indefinite on both h′′ and p′′ as long as T1 6= T2.

For su(2) the only two mappings are T1 = block diagonal decompo-

sition and T2 = complex conjugation. The eigenspace decomposition

is

Operation iσ1 iσ2 iσ3

T1 = Block matrix decomposition −1 −1 +1

T2 = Complex conjugation −1 +1 −1

T3 = T1 T2 +1 −1 −1

(12.25)

This gives g+,+ = 0, g+,− = iσ3, g−,+ = iσ2, g−,− = iσ1. Note that

each mapping Ti has one positive and two negative eigenvalues, and

chooses a different generator for the maximal compact subalgebra h′ of

the noncompact real form g′.

12.8 Conclusion

Globally symmetric spaces have the form P = G/K, where g is a real

form of a simple Lie algebra, g = k + p, with [k, k] ⊆ k, [k, p] ⊆ p, and

[p, p] ⊆ k. All Riemannian globally symmetric spaces are constructed
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as quotients of a simple Lie group G by a maximal compact subgroup

K. More specifically, they are exponentials of a subalgebra p of a Lie

algebra g for which commutation relations and inner products are given

by (11.10). Pseudo Riemannian globally symmetric spaces are similarly

constructed. For these spaces the rank can be defined. This determines

a number of algebraic properties (maximal number of independent mu-

tually commuting generators and Laplace-Beltrami operators) as well

as geometric properties (number of nonisotropic directions, dimension

of maximal Euclidean subspaces). Metric and measure are determined

on these spaces in an invariant way.

12.9 Problems

1. Show that the invariant polynomials φj(B,B
†) in (12.4) actually

depend on the invariants of BB† or B†B. These are the eigenvalues of

these square, hermitian matrices. Both the p× p and q× q matrix have

the same spectrum of nonzero eigenvalues. The remaining (p − q) or

(q − p) (whichever is positive) eigenvalues of the larger matrix are zero

(Singular Value Decomposition theorem).

2. The second order Laplace-Beltrami operator ∆2 is constructed

from the second order Casimir invariant C2 by restricting the action of

the latter to the Riemannian manifold G/H = P .

a. Show that this operator can be expressed in terms of the Cartan-

Killing metric tensor on P as ∆2 = gij(∂i∂j − Γ k
ij ∂k).

b. Show that there is one Laplace-Beltrami on the sphere S2 and com-

pute it in the standard parameterization in terms of the coordi-

nates (x, y) in the interior of the unit disk x2 + y2 ≤ 1.

c. Show that there is one Laplace-Beltrami on the two-sheeted hyper-

boloid H2
2 and compute it in the standard parameterization in

terms of the coordinates on the plane R2.

d. Show that these two Laplace-Beltrami operators in dual in some

sense. What sense?

e. Extend these results to the sphere Sn and its dual, Hn, n > 2.

3. Show that the two metric-preserving mappings T1 and T2 that

satisfy T 2
1 = T 2

2 = I generate a third, T3 = T1T2 and that T1T2 =

T2T1. Show that T3 6= I if T1 6= T2. Show that these three operators,

together with the identity, form a group isomorphic with the ‘four-group’

(‘vierergruppe’) V4. Describe the variety of decompositions of a compact
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Lie algebra g = g+,+ + g+,− + g−,+ + g−,− that is available by choosing

first, one of these three involutions, and then a second (there are 3!/1!=6

choices). Discuss dualities.

4. Show that the secular equation for the symmetric space SO(3)/SO(2)

can be obtained from (11.2) by setting b3 = 0:

det |Reg(p) − λI3| = −λ
[

λ2 + (b21 + b22)
]

= 0

There is one independent function in this secular equation. There is

one independent root. What else can be said about this Riemannian

symmetric space?

5. Show that the coefficients φj(p) in the secular equation for a sym-

metric space are obtained from the coefficients φj(h, p) in the secular

equation for the parent Lie algebra [Eq. (12.3)] by setting h = 0.

6. The hyperbolic plane H2
2 is the Riemannian symmetric space

SO(2, 1)/SO(2) obtained by exponentiating a real symmetric matrix

in the three dimensional Lie algebra

EXP





0 t1 t2
t1 0 0

t2 0 0



 =





x0 x1 x2

x1 ∗ ∗
x2 ∗ ∗



 , x2
0 − x2

1 − x2
2 = 1

a. Show that the hyperbolic plane is the two-dimensional algebraic

manifold defined by the condition x2
0−x2

1−x2
2 = 1 in the Lorentz 3-space

with signature (1, 2).

b. Show that the invariant metric is induced from the metric −ds2 =

dx2
0 − dx2

1 − dx2
2 in this Lorentz 3-space.

c. Use coordinates x1, x2 to parameterize the points in H2
2 , and show

ds2 =

(

dx1 dx2

)

[

1 + x2
2 −x1x2

−x1x2 1 + x2
1

] (

dx1

dx2

)

1 + x2
1 + x2

2

d. Show that the invariant measure is

dµ =
dx1dx2

√

1 + x2
1 + x2

2

e. Introduce polar coordinates (r, θ), x1 = r cos(θ), x2 = r sin(θ).
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Show that

ds2 =

(

dr dθ
)

[

1
1+r2 0

0 r2

](

dr

dθ

)

1 + r2

dµ =
r dr dθ√

1 + r2

f. Determine the action of a group operation in SO(1, 2) on the point

(x1, x2) ∈ H2
2 .

7. The metric on a pseudo-Riemannian symmetric space is gij(x).

a. Show that the generators of infinitesimal rotations at a point are

Xrs = grtx
t∂s − gstx

t∂r.

b. Show [Xab,∆] = 0, where ∆ = Gab;rsXabXrs is the Laplace-Beltrami

operator on this space, Gab;rs = tr {def(Xab)def(Xrs)}, and

Gab;rs is the inverse of Gab;rs.

c. Show that ∆ consists of terms that are both quadratic and linear in

the operators ∂r, and that

∆ = grs∂r∂s − grsΓ t
rs ∂t

The function Γ t
rs is not a tensor. The components of the Christof-

fel symbol are given by

Γ t
rs =

1

2
gtu (∂sgru + ∂rgsu − ∂ugrs)

8. Use radial coordinates (r, φ2, φ3, . . . , φn) on the sphere Sn ⊂ Rn+1.

a. Show the invariant volume element is

dV =
√

‖ g ‖rn−1 sinn−2 φ2 sinn−3 φ3 . . . sin
1 φn−1 sin0 φn dr∧dφ2∧dφ3∧...∧dφn

b. Show that the second order Laplace-Beltrami operator is

∆ =
1

√

‖ g ‖
∂µ

√

‖ g ‖gµν∂ν where ∂ν = ∂/∂φµ
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c. Compare this with the second order Casimir operator for SO(n+ 1):

C2 [SO(n+ 1)/SO(n)] =
n+1
∑

1≤r<s

X2
r,s(φ)

d. Show that the Laplace-Beltrami operators on a sphere can be written

recursively:

∆(Sn) = ∂n(f1(φ)∂n) + f2(φ)∆(Sn−1)

Compute f1(φ) and f2(φ).

9. A quantum system with n degrees of freedom is described by a

hamiltonian that is a linear superposition of the bilinear products a†iaj
(H = hij(t)a

†
iaj , 1 ≤ i, j ≤ n), so that iH is a time-dependent element in

the Lie algebra u(n). Assume the system is initially in its ground state.

Show that it evolves into a coherent state whose trajectory exists in the

rank one symmetric space SU(n)/U(n − 1). Write down the coherent

state parameters explicitly for a 2-level system, and relate the coherent

state parameters to the forcing terms in the hamiltonian.

10. Conformal Group: The inner product on an n-dimensional

linear vector space V (n) is defined by (x, x)m = mijx
ixj . Define coor-

dinates y in an n+ 2 dimensional linear vector space W (n+2) as follows

yi = sxi (1 ≤ i ≤ n)

yn+1 = s

yn+2 = s(x, x)m

and define an inner product M in this space by

M =















mij

0 − 1
2

− 1
2 0















a. Show (y, y)M = Mµνy
µyν = (sx, sx)m − 2

2s[s(x, x)m] = 0.

b. If m is positive definite and Lie group G preserves inner products in

V (n), then G = O(n).
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c. Show that the Lie group H that preserves inner products in W (n+2)

is O(n+ 1, 1).

d. If the metric m has signature n1, n2 (n1 + n2 = n), show that G =

O(n1, n2) and H = O(n1 + 1, n2 + 1).

e. H is called a conformal group because it preserves angles. Show this.

f. Construct the quotient space SO(n1 + 1, n2 + 1)/SO(n1, n2).

g. Under a conformal transformation y → y′ and x → x′. Show x′i =

y′i/y′n+1.

h. The Lorentz metric (+1,−1,−1,−1) leaves the four-momentum in-

variant:

E2 − (pc)2 = (mc2)2

Show that the conformal group on space time is SO(4, 2).

i. Show that the infinitesimal generators of the conformal group are

Lµν = xµ∂ν − xν∂µ
Pµ = ∂µ
Kµ = 2xµ(x

ν∂ν) − (xνxν)∂µ = 2xµ(x, ∂) − (x, x)∂µ
S = xν∂ν

The operators Lµν are the infinitesimal generators of the Lorentz

group SO(3, 1) and Pµ generate translations. Taken together

Lµν and Pµ generate the Poincaré group. The operator S gen-

erates dilations and the four operators Kµ generate conformal

transformations. Above xµ = gµνx
ν .

j. Show that the additional operators satisfy the commutation relations

[Lµν ,Kλ] = gνλKµ − gµλKν

[Lµν , S] = 0

[Pµ,Kν] = 2(gµνS − Lµν)

[S, Pµ] = −Pµ [Pµ, Pν ] = 0

[S,Kµ] = +Kµ [Kµ,Kν ] = 0

k. Show that ec
µKµ(xν) = x′ν = xν+cν(x,x)

1+2(c,x)+(c,c)(x,x).

l. Show that the conformal group SO(4, 2) is:

• The largest group that leaves the free space (no sources)

Maxwell Equations form invariant.

• The largest group that maps the (bound, scattering, parabolic)

states of the hydrogen atom to themselves.
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m. Discuss the duality created by Pµ → P ′
µ = xµ and Kµ → K ′

µ =

2(x, ∂)∂µ − (∂, ∂)xµ.

11. The upper half of the complex plane has coordinates z = x + iy.

This upper half plane provides a well studied model for the hyperbolic

plane when a suitable metric is placed on it. The half plane is mapped

onto itself by linear fractional transformations

z → z′ =
az + b

cz + d
,

[

a b

c d

]

∈ SL(2;R), ad− bc = 1

This transformation group is called the projective special linear trans-

formation group and denoted PSL(2, Z).

a. Show that M,−M ∈ SL(2;R) generate identical transformations.

The group SL(2;R) is a 2-fold covering group of PSL(2, Z).

b. Show

z′ =
ac(x2 + y2) + (ad+ bc)x+ bd + iy

|cz + d|2

In particular, show that y′ > 0 if y > 0 and y′ = 0 if y = 0.

The transformation maps the upper half plane onto the uper

half plane and its boundary, the real axis (y = 0), onto itself.

c. Show that the metric

ds2 =
[

dx dy
]

[

1
y

0

0 1
y

]

[

dx

dy

]

=
dzdz

y2

is invariant under these transformations.

d. Show dz′ = dz/|cz + d|2
e. Show that the invariant measure is dµ = dxdy/y2

f. Show that the distance between two points z1 and z2 is

s(z1, z2) = 2 tanh−1 |z1 − z2|
|z1 − z2|

= log

{ |z1 − z2| + |z1 − z2|
|z1 − z2| − |z1 − z2|

}

12. The unit disk in the complex plane w = x + iy consists of those

points that satisfy ww = x2 + y2 ≤ 1. The unit disk, with a suitable

metric, provides a second representation of the hyperbolic plane. The

unit disk is mapped onto itself by linear fractional transformations
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w → w′ =
αw + β

βw + α
,

[

α β

β α

]

∈ SU(1, 1), αα− ββ = 1

a. Show that M,−M ∈ SU(1, 1) generate identical mappings of the

unit disk into itself.

b. Show that w = eiφ → w′ = eiψ. Compute ψ(φ).

c. Show that the metric

ds2 =
(

dx dy
)







1

(1 − ww)2
0

0
1

(1 − ww)2







(

dx

dy

)

=
dwdw

(1 − ww)2

is invariant under this group.

d. Show that the invariant volume element is

dµ =
dxdy

(1 − ww)2
=

dwdw

(1 − ww)2

e. Show that the distance between two points w1 and w2 in this unit

disk is

s(w1, w2) = tanh−1

{ |w1 − w2|
|1 − w1w2|

}

13. Show that the mapping from z in the upper half plane to w in the

unit disk given by

w = eiφ
z − z0
z − z0

is conformal, that is, it preserves angles. Here z0 is any point in the

upper half plane.

a. Compute the inverse of this mapping, and show that it maps the

interior of the unit disk unto the upper half of the complex plane and

the boundary of the unit disk onto the real axis (boundary of the upper

half plane).

b. Choose z0 = i and eiφ = i to give the canonical map

w =
iz + 1

z + i

c. Show that the matrices that generate the Möbius transformations

of the upper half plane and the unit disk are related by
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S

[

a b

c d

]

S−1 =

[

α β

β α

]

S =
1√
2

[

1 −i
−i 1

]

d. Show that this transformation maps the invariant metric and measure

on the upper half plane onto the invariant metric and measure on the

unit disk.


