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In the previous chapter the canonical commutation relations for semisim-
ple Lie algebras were elegantly expressed in terms of roots. Although roots
were introduced to simplify the expression of commutation relations, they
can be used to classify Lie algebras and to provide a complete list of simple
Lie algebras. We achieve both aims in this chapter. However, we use two
different methods to accomplish this. We classify Lie algebras by spec-
ifying their root space diagrams. This is a relatively simple job using a
‘building up’ approach, adding roots to rank l root space diagrams to con-
struct rank l+1 root space diagrams. However, it is not easy to prove the
completeness of root space diagrams by this method. Completeness is ob-
tained by introducing Dynkin diagrams. These specify the inner products
among a fundamental set of basis roots in the root space diagram. In this
approach completeness is relatively simple to prove, while enumeration of
the remaining roots within a root space diagram is less so.

10.1 Properties of Roots

In an effort to cast the commutation relations of a semisimple Lie alge-

bra into an eigenvalue-eigenvector format, a secular equation was con-

structed from the regular representation. The rank of an algebra is,

among other things:

(i) The number of independent functions in the secular equation;

(ii) The number of independent roots of the secular equation;

(iii) The number of mutually commuting operators in the Lie algebra;
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180 Root Spaces and Dynkin Diagrams

(iv) The number of invariant operators that commute with all elements

in the Lie algebra (Casimir operators);

(v) The dimension of the positive-definite root space that summarizes

the commutation relations.

In terms of the root space decomposition the commutation relations of

the l (= rank) operators Hi and the shift operators Eα are

[Hi, Hj ] = 0

[H, Eα] = αEα

[Eα, Eβ ] = α ·H α + β = 0

= Nα,βEα+β α + β 6= 0, a root

= 0 α + β not a root

(10.1)

The coefficients Nα,β are defined in terms of the nonnegative integers

m, n by

N2
α,β+kα = (n − k)(m + k + 1)(α · α)/2 (10.2)

where β + kα is a root only for k = −m, · · · , +n. The roots are normal-

ized by
∑

α6=0

α · α = rank = l (10.3)

In deriving the value for the structure constant Nα,β we observed

2(α · β)

α · α
is an integer

β′ = β −
2(α · β)

α · α
α is a root

(10.4)

The root β′ is obtained by reflecting β in the hyperplane orthogonal

to α. These two observations are all that is required to construct root

space diagrams of any rank.

If we write 2(α · β)/(α ·α) = n and 2(α · β)/(β · β) = n′, where n and

n′ are integers, then by the Schwartz inequality

0 ≤ cos2(α, β) =

(
α · β

α · α

) (
α · β

β · β

)

=
n

2

n′

2
≤ 1 (10.5)

These two results severely constrain the possible angles between two

roots and their relative length. The results are summarized in Table

10.1.
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Table 10.1. Properties of roots in a root space diagram.

cos2(α, β) θ(α, β) n = 2α·β

α·α
n′ = 2α·β

β·β
α·α
β·β

= n′

n

1 π

2
±

π

2
±2 ±2 1

3

4

π

2
±

π

3
±3 ±1 3−1

±1 ±3 3+1

2

4

π

2
±

π

4
±2 ±1 2−1

±1 ±2 2+1

1

4

π

2
±

π

6
±1 ±1 1

0 π

2
0 0 −

10.2 Root Space Diagrams

The procedure for constructing root space diagrams in spaces of any

dimension (= rank) is simple. Begin with the rank-one root space. It is

unique, with nonzero vectors ±e1. To construct rank two root spaces,

add a non-collinear vector to this root space in such a way that the

constraints exhibited in Table 10.1 are obeyed, and complete the root

space by reflections in hyperplanes orthogonal to all roots. Only a small

number of rank-two root spaces can be constructed in this way. These

are A2, B2 = C2, D2 and G2, and are shown in Fig. 9.6.

Rank-three root spaces are constructed from rank-2 root spaces by

the same process. A non coplanar vector is added to a rank-two root

space diagram subject to the condition that all requirements of Table

10.1 are satisfied. The resultant set of roots is completed by reflection in

hyperplanes orthogonal to all roots. If any pair of roots in the completed

diagram does not satisfy these conditions, the resulting diagram is not

an allowed root space diagram. The allowed rank-3 root space diagrams

are shown in Fig. 10.1.

This procedure is inductive. All rank-l root space diagrams are con-

structed in this way from rank-(l − 1) root space diagrams. We find by

this building-up process that there are four infinite series of root spaces

with the following sets of roots:

Al−1 +ei − ej 1 ≤ i 6= j ≤ l l − 1 ≥ 1

Dl ±ei ± ej 1 ≤ i 6= j ≤ l l > 3

Bl ±ei ± ej ,±ei 1 ≤ i 6= j ≤ l l > 2

Cl ±ei ± ej ,±2ei 1 ≤ i 6= j ≤ l l > 1

(10.6)

The subscript on the letter indicates the rank of the root space. It is

easily seen that Dl is constructed by adding roots ±(ei + ej) to Al−1,
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and Bl, Cl are constructed by adding roots ±ei, ±2ei to Dl. The root

spaces Al−1, Dl, Bl, Cl are all inequivalent with the following exceptions

A1 = B1 = C1

B2 = C2

A3 = D3

(10.7)

The root space D2 is semisimple

D2 = A1 + A1 (10.8)

In addition to these four unending series there are five exceptional

root spaces:

G2 +ei − ej

± [(ei + ej) − 2ek] 1 ≤ i 6= j 6= k ≤ 3

F4 ±ei ± ej

±2ei

±e1 ± e2 ± e3 ± e4 1 ≤ i 6= j ≤ 4

E6 ±ei ± ej

1
2

(±e1 ± e2 ± e3 ± e4 ± e5)±
︸ ︷︷ ︸

even number of + signs

√
3

4
e6 1 ≤ i 6= j ≤ 5

E7 ±ei ± ej

1
2

(±e1 ± e2 ± e3 ± e4 ± e5 ± e6)
︸ ︷︷ ︸

even number of + signs

±
√

2
4

e7 1 ≤ i 6= j ≤ 6

E8 ±ei ± ej
1
2

(±e1 ± e2 ± e3 ± e4 ± e5 ± e6 ± e7 ± e8)
︸ ︷︷ ︸

even number of + signs

1 ≤ i 6= j ≤ 8

(10.9)

The building up principle is summarized in Fig. 10.2. In this figure

all root spaces are shown by rank. Arrows connect pairs related by the

building up principle.

Remark 1: The following classical groups are associated with these
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Fig. 10.1. Rank-3 root space diagrams. Top: A3, D3. Bottom: B3, C3.

root spaces

Al−1 SU(l), SL(l; R), SU(p, q) p + q = l

Dl SO(2l), SO(p, q) p + q = 2l

Bl SO(2l + 1), SO(p, q) p + q = 2l + 1

Cl Sp(l), Sp(p, q) p + q = l

(10.10)

Several different Lie groups (algebras) are associated with each root

space. This comes about because root spaces classify complex Lie alge-

bras. Recall that extension of the field from real to complex numbers

was required to guarantee that the secular equation could be solved.
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Fig. 10.2. Root spaces constructed by the building-up principle. There are
four infinite series and five exceptional Lie algebras. The root spaces are
organized by rank.

Each of the Lie algebras with the same root space has the same complex

extension: for example, SL(l; C) for Al−1.

Remark 2: The root space D2 consists of two orthogonal sets of roots

±(e1−e2) and ±(e1+e2). The decomposition is shown in Fig. 10.3. Or-

thogonal root spaces describe semisimple Lie algebras. Root subspaces

that do not have an orthogonal decomposition describe simple Lie alge-

bras. Complete reducibility of the regular representation corresponds to

decomposition of the root space into disjoint (orthogonal) root spaces

and of the semisimple Lie algebras to simple invariant subalgebras.

Remark 3: The root spaces B2 and C2 are equivalent, as is easily
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Fig. 10.3. The root space D2 consists of two orthogonal root subspaces. Both
describe the rank-one algebra A1.

seen by rotation. The root space B2 describes SO(5) while C2 describes

Sp(2) = U(2; Q), which has a 4-dimensional matrix representation ob-

tained by replacing each quaternion by a complex 2×2 matrix. Therefore

we should expect SO(5) to have a 4-dimensional ‘spinor’ representation

based on U(2; Q) in the same way that SO(3) (B1) has a 2-dimensional

spinor representation based on U(1; Q) or SU(2) (A1).

Remark 4: In the building-up construction the roots in each root

space diagram are explicitly constructed. What is not immediately ob-

vious is that there are no more simple root spaces than those listed. How

are we sure that there are no more than five exceptional root spaces?

This question is not easy to resolve in the context of root space con-

structions alone. However, it is easily resolved by another algorithmic

procedure. This procedure easily yields a beautiful completeness argu-

ment. The price we pay is a somewhat greater difficulty in constructing

the complete set of roots for these spaces. However, since they have

been constructed above, this poses no severe limitation.

10.3 Dynkin Diagrams

A plane through the origin of a root space diagram that does not contain

any nonzero roots divides the roots into two sets, one ‘positive,’ the

other negative (cf. Figs. 9.6). Among the positive roots the l nearest to

this hyperplane in a rank-l root space are linearly independent. They

can therefore be chosen as a basis set in this space. These roots are

called fundamental roots, and denoted α1, α2, · · · , αl. Every positive

root can be expressed in terms of this basis as a linear combination
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G2:
31

α1 α2

-e1-e2+2e3 e2+e3 -2e1

-e1+e2

-e1+2e2 -e3e2 -e3

e1+e2 -2e3

e1 -e3
2e1 -e2 -e3

e1 -e2

e1+e3 -2e2

-e2+e3

-e1+e3

Fig. 10.4. Root space for G2. Fundamental roots are α1 = e1 − e2 and α2 =
−e1 + 2e2 − e3. All roots are orthogonal to R = e1 + e2 + e3.

of these fundamental roots with integer coefficients. The integers are

all positive or zero, because every shift operator defined by a positive

root can be written as a multiple commutator of shift operators with

fundamental positive roots. By symmetry, every negative root is a linear

combination of fundamental roots with nonpositive integer coefficients.

The fundamental roots for G2 are shown in Fig. 10.4. Fundamental

roots for the root spaces Al−1, Dl, Bl, Cl are

α1 α2 α3 αl−1 αl

Al−1 : e1 − e2 e2 − e3 e3 − e4 · · · el−1 − el

Dl : ” ” ” · · · ” el−1 + el

Bl : ” ” ” · · · ” el

Cl : ” ” ” · · · ” 2el

(10.11)

Inner products among the fundamental roots are summarized conve-

niently in a diagrammatic form. The inner product between two funda-
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mental roots is negative or zero

(αi, αj) = −
√

nij/4 (10.12)

where nij is 0, 1, 2, or 3. Each fundamental root is represented by a

dot. Dots i and j are joined by nij lines. Orthogonal roots are not

connected. Such a diagram is called a Dynkin diagram. The Dynkin

diagram for the semisimple Lie algebra represented by orthogonal root

spaces G2 + B3 is shown in Fig. 10.5.

3 1 2 2 1

G2 B3

Fig. 10.5. Disconnected Dynkin diagrams describe simple Lie algebras. Here
the disconnected diagram describes G2 ⊕ B3.

Orthogonal root spaces for semisimple Lie algebras are represented by

disconnected Dynkin diagrams. In these diagrams the relative (squared)

lengths of the fundamental roots (3, 1 for G2) are indicated over the root

symbol, by an arrow pointing from the shorter to the longer, and by open

and solid dots. The conventions are interchangeable: normally not more

than one is adopted. We will use only one at a time.

Only a very limited number of distinct kinds of Dynkin diagrams can

occur. The limitations derive from two observations:

Observation 1: The root space is positive definite.

Observation 2: If vi is an orthonormal system of vectors in the root

space and u is a unit vector, then the direction cosines u · vi

obey
∑

(u · vi)
2 ≤ 1 (10.13)

These two observations are now used to list a set of properties that

constrain the allowed Dynkin diagrams ever more tightly.

Property 1: There are no loops. A diagram containing a loop has at

least as many lines as vertices. With ui = αi/|αi| the inner

product

(
∑

ui,
∑

uj) = n + 2
∑∑

ui · uj ≥ 0 (10.14)
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cannot be positive since 2ui ·uj ≤ −1 if αi and αj are connected.

Property 2: The number of lines connected to any node is less than

four. This results from Observation 2. If vi are connected to u,

then
∑

(u · vi)
2 =

∑

ni/4 < 1 (10.15)

Property 3: A simple chain connecting any two dots can be shrunk.

An allowed diagram is transformed to an allowed diagram. This

allows the construction shown in Fig. 10.6.

simple chain

Fig. 10.6. A simple linear chain can be removed. If the original is an allowed
Dynkin diagram, the shortened diagram is also an allowed Dynkin diagram.
In this case the original diagram is not an allowed Dynkin diagram.

Since the constructed diagram violates Property 2, so also

does the original diagram.

The only possibilities remaining are shown in Fig. 10.7.

u1 up vq v1

u1 X vq-1 v1up-1

wr-1

w1

(B,C,F)

(D,E)

Fig. 10.7. General forms of allowed root space diagrams after the process of
contraction has been performed.

For the diagrams (B, C, F ) with a single double link, the Schwartz
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inequality applied to the vectors

u =

p
∑

i=1

iui v =

q
∑

j=1

jvj (10.16)

where ui, vj are unit vectors ui = αi/|αi| and vi = αj/|αj|, can be

transformed to the inequality
(

1 +
1

p

) (

1 +
1

q

)

> 2 (10.17)

This has the following solutions with p ≥ q

p arbitrary, q = 1, Bl, Cl l = p + 1

p = 2, q = 2, F4 (10.18)

For the diagrams (D, E) Observation 2 applied to the vectors u, v,

and w defined as in Eq. (10.16) leads to the inequality

1

p
+

1

q
+

1

r
> 1 (10.19)

This has the following solutions with p ≥ q ≥ r ≥ 2

p q r Root space

p 2 2 Dp+2

3 3 2 E6

4 3 2 E7

5 3 2 E8

(10.20)

The allowed Dynkin diagrams are summarized in Table 10.2. This table

provides a complete list of simple root spaces. Each root space has been

constructed in Sec. 10.2. The complete set of roots in each of the root

spaces is listed in that section.

10.4 Conclusion

The canonical commutation relations for a semisimple Lie algebra have

been expressed in terms of root space diagrams. These diagrams have

been used to classify all simple root space diagrams of rank l by con-

structing a complete set of roots inductively form each root space dia-

gram of rank l− 1. The completeness of this construction is guaranteed

by the 1:1 correspondence between the root space diagrams constructed

in Sec. 10.2 and the allowed connected Dynkin diagrams constructed in

Section 10.3
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Table 10.2. Allowed root spaces.

α1

An

Dn

Bn

Cn

G2

F4

E6

E7

E8

α2 αn-1 αn-1

αn-1

αn

αn

αn

α1 α2 αn-2

α1 α2 αn-1

α1 α2 αn-1

α1 α2

α1 α2 α3 α4

α6

α1 α2 α3 α4 α5 α6

α1 α2 α3 α4 α5 α6 α7

α7

α8

α1 α2 α3 α4 α5
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10.5 Problems

1. Show that the following three statements for a semisimple Lie algebra

are equivalent:

a. The Lie algebra has two simple invariant subalgebras;

b. The nonzero roots in its root space diagram fall into two mutually

orthogonal subsets;

c. Its Dynkin diagram is disconnected, with two connected components.

Do these statements extend to semisimple Lie algebras with three or

more simple invariant subalgebras?

2. Show that bilinear combinations of two boson creation and/or anni-

hilation operators can be identified with the roots in the 10-dimensional

Lie algebra C2 as shown in Fig. 10.8(a). Identify H1 and H2.

3. Show that bilinear combinations of two fermion creation and/or an-

nihilation operators can be identified with the roots in the 6-dimensional

Lie algebra D2 as shown in Fig. 10.8(b). Identify H1 and H2.

b2 b2

+ +

b1b2

+
b1 b2

+ +

b2 b2

+
+

b1b1
b1b1

+ +

1
2

+b1 b1
1
2

+
b1 b2

b2b2

b2b1

+

(a) (b)

Fig. 10.8. (a) Roots of C2 are identified with products of boson operators.
(b) Roots of D2 are identified with products of fermion operators. Note that

f
†
1f

†
1 = 0, etc.

4. Show that the following identifications are appropriate for the

generators of the Lie group U(l):
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Canonical Boson Coordinates & Fermion

Form Operators Derivatives Operators

Hi b†i bi xi∂i f †
i fi

E+ei−ej
b†ibj xi∂j f †

i fj

5. Show that the following identifications are appropriate for the

eigenoperators for the root spaces Cl and Dl:

Cl Dl

Canonical Boson Coordinates & Fermion Coordinates &

Form Operators Derivatives Operators Derivatives

Hi b†i bi + 1
2

xi∂i f †
i fi + 1

2
xi∂i + 1

2

E+ei−ej
b†ibj xi∂j f †

i fj xi∂j

E+ei+ej
b†ib

†
j xixj f †

i f †
j xixj

E−ei−ej
bibj ∂i∂j fifj ∂i∂j

E+2ei
b†ib

†
i xixi

E−2ei
bibi ∂i∂i

6. Apply the Schwartz inequality to the two vectors in Eq. (10.16)

and show that the result can be expressed in the form of the inequality

given in Eq. (10.17).

7. Use the projection inequality of Eq. (10.13) with the three vec-

tors constucted for the Dynkin diagrams of type (D, E) to obtain the

inequality of Eq. (10.19).

8. A Lie algebra is spanned by n2 operators of the form a†
iaj , with

1 ≤ i, j ≤ n. Show that the linear vector space for this algebra can

be written as the direct sum of two subspaces: L,Q spanned by the

operators

L Q

Lij = a†
iaj − a†

jai = −Lji Qij = a†
iaj + a†

jai = +Qji

For n = 3 the subspaces transform like an angular momentum vector

and a quadrupole tensor. Show that the commutation relations are

[L,L] = L [Lij , Lrs] = +δjrLis + δisLjr − δirLjs − δjsLir

[L,Q] = Q [Lij , Qrs] = +δjrQis − δisQjr − δirQjs + δjsQir

[Q,Q] = L [Qij , Qrs] = +δjrLis + δisLjr + δirLjs + δjsLir



10.5 Problems 193

The quadrupole tensor, in turn, with six components, can be written as

the sum of a traceless tensor Q̂ and a scalar N :

N̂ =
3∑

i=1

a†
iai Q̂ij = Qij −

2

3
N̂δij

The operator N̂ commutes with all operators a†
iaj . Interpret these

commutation relations in physical terms (scalars, vectors and traceless

quadrupole tensors) and in mathematical terms (commutative invariant

subalgebra N̂ ; Cartan decomposition of a simple Lie algebra L + Q̂).

9. Carry out a similar decomposition for any value of n. Show that

the only changes in the discussion of Problem 8 are the dimensions of

the spaces L (3 → n(n − 1)/2), Q (6 → n(n + 1)/2), and the definition

of N̂ (3 → n).


