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In this chapter we discuss the structure of Lie algebras. A typical Lie
algebra is a semidirect sum of a semisimple Lie algebra and a solvable
subalgebra that is invariant. By inspection of the regular representation
‘in suitable form,’ we are able to determine the maximal nilpotent and
solvable invariant subalgebras of the Lie algebra and its semisimple part.
We show how to use the Cartan-Killing inner product to determine which
subalgebras in the Lie algebra are nilpotent, solvable, semisimple, and
compact.

8.1 Regular Representation

A Lie algebra is defined by its commutation relations. The commutation

relations are completely encapsulated by the structure constants. These

are conveniently summarized in the regular representation

[Z, Xi] = R(Z) j
i Xj (8.1)

Under a change of basis Xj = A s
j Ys this n × n matrix undergoes a

similarity transformation

S(Z) s
r = (A−1) i

r R(Z) j
i A s

j (8.2)
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It is very useful to find a basis, or construct a similarity transformation,

that brings the regular representation of every operator in the Lie algebra

simultaneously to some standard form. The structure of the Lie algebra

can be decided by inspecting this standard form.

1 2 3 λ1

•••

λ2

λn

λ3

Zero nil(n) sol(n)
.

4 5 6

reducible fully reducible irreducible

Fig. 8.1. Structure of the regular representation for different types of Lie al-
gebras.

8.2 Some Standard Forms for the Regular Representation

We summarize in Fig. 8.1 the standard forms that the regular represen-

tation can assume. We also provide an example for each.

1. Zero. In this case all structure constants vanish and the algebra

is commutative.

Example: The Lie algebra a(p, q) consists of matrices of the form












0 A

0 0












↑

p

↓

↑

q

↓

(8.3)

This is an n × n (n = p + q) matrix algebra which is N = p ∗ q di-

mensional. The independent degrees of freedom are the N independent

matrix elements of the p× q matrix A. The n×n matrices all commute
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under matrix multiplication. The group operation is equivalent to addi-

tion of the p× q matrices. The regular representation consists of N ×N

matrices, all N of them are zero.

2. nil(n) Strictly Upper Triangular. In this case the Lie algebra

is nilpotent.

Example: We consider the Lie algebra spanned by the photon oper-

ators a, a†, and I = [a, a†] or the isomorphic 3×3 matrix algebra (5.11).

The regular representation is a 3 × 3 matrix

Reg(la + ra† + δI) =





0 0 l

0 0 −r

0 0 0





a†

a

I

(8.4)

3. sol(n) Upper Triangular. In this case nonzero elements occur

on and above the diagonal. The algebra is solvable.

Example: The algebra spanned by the photon number operator n̂ =

a†a, creation and annihilation operators a† and a, and their commutator

I = [a, a†] is isomorphic to the algebra described by the 3 × 3 matrices

(5.9). The regular representation is a 4 × 4 matrix

Reg(ηn̂ + la + ra† + δI) =







0 −r l 0

0 η 0 l

0 0 −η −r

0 0 0 0







n̂

a†

a

I

(8.5)

4. ut(p, q) In this case the regular representation is reducible and the

Lie algebra is nonsemisimple.

Example: We consider the algebra consisting of the six photon op-

erators n̂ = 1
2

{
a, a†

}
= a†a + 1

2 , a† 2, a2, a†, a, I = [a, a†]. This is iso-

morphic to the algebra of six 4 × 4 matrices presented in (5.7). The

algebra of 4×4 matrices (the “defining” representation) and the regular
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representation of this algebra are given below

η(n̂ + 1
2 ) + Ra† 2 + La2 + ra† + la + δI

def =







0 l r −2δ

0 η 2R −r

0 −2L −η l

0 0 0 0







Reg =












0 −2R 2L −r l 0

4L 2η 0 2l 0 0

−4R 0 −2η 0 −2r 0

η 2L l

−2R −η −r

0 0 0












n̂ + 1
2

a†2

a2

a†

a

I

(8.6)

The subspace spanned by the three operators a†, a, I is invariant, as is

shown by the structure of the regular representation.

5. Block Diagonal. In this case the regular representation is fully

reducible and the Lie algebra is semisimple.

Example: The Lie algebra so(4) has six generators Xij = −Xji,

1 ≤ i, j ≤ 4 and commutation relations

[Xij , Xrs] = Xisδjr + Xjrδis − Xirδjs − Xjsδir (8.7)

The following two linear combinations of generators

Yi = 1
2 (Xi4 + 1

2ǫirsXrs) Xi4 = Yi + Zi

Zi = 1
2 (Xi4 −

1
2ǫirsXrs) Xij = ǫijk(Yk − Zk)

(8.8)

obey the commutation relations

[Yi, Yj ] = −ǫijkYk

[Zi, Zj] = +ǫijkZk (8.9)

[Yi, Zj] = 0
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The 4× 4 defining matrix representation and the 6× 6 regular represen-

tation have the structure

X =
∑

yiYi +
∑

zjZj

def(X) →







0 +(y3 − z3) −(y2 − z2) +(y1 + z1)

−(y3 − z3) 0 +(y1 − z1) +(y2 + z2)

+(y2 − z2) −(y1 − z1) 0 +(y3 + z3)

−(y1 + z1) −(y2 + z2) −(y3 + z3) 0







Reg(X) →












0 −y3 +y2

+y3 0 −y1

−y2 +y1 0

0 +z3 −z2

−z3 0 +z1

+z2 −z1 0












Y1

Y2

Y3

Z1

Z2

Z3

(8.10)

Since the regular representation has a block diagonal structure, the al-

gebra is semisimple. It is not at all obvious that the Lie algebra so(4) is

semisimple and can be written as the direct sum of two simple algebras.

This is not true for the other orthogonal Lie algebras, so(n), n > 4.

We will have to wait until Chapter 10 to be able to see that so(4) is

semisimple, not simple.

6. Irreducible. In this case the regular representation is irreducible

and the Lie algebra is simple.

Example: The Lie algebras su(n) (n ≥ 2), so(n) (n > 4), and sp(n)

(n ≥ 1) are all simple. To be concrete, the Lie algebra for SU(2) has

defining and regular representations

def =
i

2

[
a3 a1 − ia2

a1 + ia2 −a3

]

Reg =





0 −a3 +a2

+a3 0 −a1

−a2 +a1 0





X1

X2

X3

(8.11)

8.3 What These Forms Mean

Reducing the regular representation to one of the standard forms de-

scribed in the previous section means that the structure constants, and

therefore the commutation relations, have also been reduced to some

standard form. We discuss in this section what each of the standard
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forms implies about the commutation relations and structure of the Lie

algebra.

1. Commutative Case. If all the structure constants are zero, then

[Xi, Xj ] = 0 (8.12)

for each element in the Lie algebra.

2. & 3. Nilpotent and Solvable. In these cases

[Z, Xi] = R(Z) j
i Xj

R(Z) j
i = 0 unless j > i nilpotent

j ≥ i solvable

(8.13)

This means that [Z, Xi] can be expressed as a linear combination of

basis vectors Xj with j ≥ i. This in turn means that the basis vectors

Xi, Xi+1, · · · , Xn span a subalgebra for each value of i = 1, 2, · · · , n.

Since this subalgebra is mapped onto itself by every element Z in the

original algebra, each subalgebra is an invariant subalgebra. The result

is shown schematically in Fig. 8.2 and is summarized by

x1

x2

xn-1

xn vn vn-1

v2

v1

λ1

λ2

λn

λn-1

• ••

Fig. 8.2. Structure of nilpotent and solvable algebras.
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V1 spanned by Xn, Xn−1, Xn−2, · · · , X2, X1

∪

V2 spanned by Xn, Xn−1, Xn−2, · · · , X2

∪
...

...
...

∪

Vn−2 spanned by Xn, Xn−1, Xn−2

∪

Vn−1 spanned by Xn, Xn−1

∪

Vn spanned by Xn

(8.14)

Each Vi is an invariant subalgebra in Vj , i > j. The original algebra is

V1.

4. Reducible or Nonsemisimple. The block diagonal form for the

regular representation requires the commutation relations











⋆ ⋆

0 ⋆












↑

V1

↓

↑

V2

↓

⇒ [Any, V2] ⊂ V2 (8.15)

Since in particular [V2, V2] ⊆ V2, V2 is a subalgebra in the original alge-

bra. Further, since the commutator of anything in the original algebra

with V2 is in V2, V2 is an invariant subalgebra. The complementary

subspace V1 is not generally even a subalgebra of the original algebra.

5. Fully Reducible or Semisimple. In this case the block diagonal

form for the regular representation requires the commutation relations











⋆ 0

0 ⋆












↑

V1

↓

↑

V2

↓

⇒

[V1, V1] ⊆ V1

[V2, V2] ⊆ V2

[V1, V2] = 0

(8.16)

Both V1 and V2 are invariant subalgebras. Moreover, every element in

V1 commutes with every operator in V2. Therefore the two subalgebras

V1 and V2 can be studied separately and independently.
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6. Irreducible or Simple. In this case every generator X can be

written as the commutator of some pair of operators Y and Z in the Lie

algebra:

X = [Y, Z] (8.17)

It is this ability of an algebra to reproduce itself under commutation

that distinguishes simple and semisimple Lie algebras from solvable and

nilpotent algebras. Nonsemisimple algebras are composed of a semisim-

ple subalgebra and a solvable invariant subalgebra.

8.4 How to Make This Decomposition

There is a systematic procedure for decomposing a Lie algebra into its

semisimple component and its maximal solvable invariant subalgebra.

This is a simple two-step procedure. In the first step we identify the

subspace of the Lie algebra on which the Cartan-Killing inner product

is identically zero. If there is no such subspace the algorithm stops

here and the algebra is semisimple. If there is a nontrivial subspace, it

forms the maximal nilpotent invariant subalgebra of the algebra. This

subspace is ‘removed’ from the algebra, and the commutation relations

and Cartan-Killing inner product for the remaining operators are com-

puted. The algorithm stops here, regardless of the outcome. If there is

a nontrivial subspace on which the new Cartan-Killing inner product is

identically zero, the elements in this subspace, together with the previ-

ously identified nilpotent invariant subalgebra, span a solvable algebra.

This is the maximal solvable invariant subalgebra in the original Lie al-

gebra. The complementary subspace on which the new Cartan-Killing

inner product is nonsingular is the semisimple part of the original Lie

algebra.

In small, easy-to-digest steps, this two-step algorithm takes the fol-

lowing form:

a. From the structure constants of the original Lie algebra g form the

Cartan-Killing inner product.

b. Determine the subspace on which this inner product is positive-

definite, negative-definite, and zero:

g = (V− + V+) + V0 (8.18)

c. If V0 is zero, stop. If not, V0 is the maximal nilpotent invariant

subalgebra in g.
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d. Form the difference g′ = g − V0. This is a Lie algebra (under the

‘mod’ operation: set to zero any part of the commutator that

is in V0). Compute the structure constants and Cartan-Killing

inner product for g′.

e. Effect another decomposition:

g′ = (V ′
− + V ′

+) + V ′
0 (8.19)

f. The original Lie algebra has the following structure

g = V ′
−

︸︷︷︸

compact subalgebra

+ V ′
+

︸︷︷︸

noncompact generators
︸ ︷︷ ︸

semisimple

+ V ′
0

︸︷︷︸

abelian

+ V0
︸︷︷︸

nilpotent
︸ ︷︷ ︸

max. solvable invariant subalgebra
︸ ︷︷ ︸

nonsemisimple Lie algebra

(8.20)

This algorithm cannot distinguish semisimple Lie algebras from simple

Lie algebras. We will develop tools in Chapter 10 that will make this

distinction possible simply by inspection of the algebra’s (canonical)

commutation relations.

8.5 An Example

To illustrate this procedure, we compute the structure of the six-dimensional

Lie algebra of two photon operators. The regular representation is given

in (8.6). The inner product of a vector with itself is

(X, X) = −40RL + 10η2 (8.21)

The inner product is identically zero on the subspace V0 spanned by

a†, a and I. The three remaining operators have regular representation

η(a†a +
1

2
) + Ra†2 + La2 −→





0 −2R 2L

4L 2η 0

−4R 0 −2η





n̂ + 1
2

a†2

a2

(8.22)

with inner product

(X, X)′ = −32RL + 8η2 (8.23)

In this case V ′
0 = 0 and the two photon algebra has the decomposition

g = (n̂ +
1

2
, a†2, a2)

︸ ︷︷ ︸

su(1,1)

+ (a†, a, I)
︸ ︷︷ ︸

nilpotent invariant subalgebra

(8.24)
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The Cartan-Killing inner product can be diagonalized by choosing two

linear combinations of the operators a†2 and a2. Then a†2 + a2 is a

compact generator, since the Cartan-Killing form is negative-definite on

it. The other two operators, a†a + 1
2 and a†2 − a2, are noncompact.

8.6 Conclusion

An arbitrary Lie algebra is a semidirect sum of a semisimple Lie algebra

and a solvable invariant subalgebra. The structure of a Lie algebra

can be determined by inspecting its regular representation, once this

has been brought to suitable form by a similarity transformation. To

facilitate constructing this transformation, we have shown how to use the

Cartan-Killing inner product to determine the linear vector subspaces

in the Lie algebra that are maximal nilpotent invariant subalgebras, the

maximal solvable invariant subalgebra, the semisimple subalgebra, and

its maximal compact subalgebra.

8.7 Problems

1. Compute the decomposition (8.20) for

i. The photon algebra n̂, a†, a, I (8.5).

ii. The algebra so(3, 1).

iii. The algebra for the Poincaré group (3.26).

iv. The algebra for the Galilei group (3.27).

2. Compute the decomposition (8.20) for Lie algebras spanned by

various combinations of the boson creation and annihilation operators

(i. - vii. below). These satisfy [bi, b
†
j ] = Iδij , 1 ≤ i, j ≤ n. Commutators

involving bilinear (trilinear, ...) products are computed in the usual way.

i. bi, b
†
j , I.

ii. b
†
ibj.

iii. b
†
ibj , bi, b

†
j , I.

iv. b
†
i b

†
j, b

†
ibj + 1

2δij , bibj .

v. b
†
ib

†
j , b

†
ibj + 1

2δij , bibj, bi, b
†
j , I.

vi. b, b†b, b†b†b.

vii. b†, b†b, b†bb.
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3. Fermion creation and annihilation operators obey anticommutation

relations
{

fi, f
†
j

}

= δij , but their bilinear combinations close under

the same commutation relations as do boson operators. Compute the

structure of these fermion algebras:

i. f
†
i fj .

ii. f
†
i f

†
j , f

†
i fj + 1

2δij , fifj.

4. Compute the decomposition (8.20) for Lie algebras spanned by

various combinations of the position (xi) and momentum (∂j) operators

for n independent directions:

i. xi, ∂j , I.

ii. xi∂j .

iii. xi∂j , xi, ∂j , I.

iv. xixj , xi∂j + 1
2Iδij , ∂i∂j .

v. xixj , xi∂j , ∂i∂j , xi, ∂j , I.

vi. d
dx

, x d
dx

, x2 d
dx

.

vii. x, x d
dx

, x d2

dx2 .

5. What is the relation between the Cartan-Killing inner product com-

puted using the defining matrix representation of a matrix Lie algebra

and using the regular matrix representation of the Lie algebra?

6. The Lorentz, Poincaré, and Galilei groups in 2+1 dimensions (x, y

and t) have Lie algebras with matrix structures:





0 θ v1

−θ 0 v2

v1 v2 0











0 θ v1 t1
−θ 0 v2 t2

v1 v2 0 t3
0 0 0 0













0 θ v1 t1
−θ 0 v2 t2

0 0 0 t3
0 0 0 0







Lorentz Poincare Galilei
(8.25)

a. Compute the matrix infinitesimal generators for each.

b. Construct their commutation relations.

c. Decompose each Lie algebra into the standard form (8.20).

d. For each Lie algebra, express the generators in terms of the operators

xi, ∂j .
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e. For each Lie algebra, express the generators in terms of the boson

operators b
†
i , bj , 1 ≤ i, j ≤ 3.

7. In a semisimple Lie algebra the Cartan-Killing metric gij = C s
ir C r

js

is nonsingular and therefore the contravariant metric gij is well defined.

Show that the bilinear operator C2 = gijXiXj satisfies [C2, Xk] = 0. If

there is one quadratic Casimir operator, it must therefore be propor-

tional to C2.

8. Show that Cijk = C r
ij grk is a third order antisymmetric tensor:

Cijk = Cjki = Ckij = −Ckji = −Cjik = −Cikj . (Hint: use the Jacobi

identity.)

9. Determine the structure of the Lie algebra defined by the following

operators (c.f., Eq. (16.57):

Xij = xi∂j − xj∂i

Yi = 2t
∂

∂xi
− xiu

∂

∂u
(8.26)

Z = 2t
∂

∂t
+ xi ∂

∂xi
− nu

∂

∂u


