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Lie algebras of matrices can be mapped onto Lie algebras of operators in a
number of different ways. Three useful matrix algebra to operator algebra
mappings are described in this chapter.

6.1 Boson Operator Algebras

It is possible to construct useful operator algebras from Lie algebras.

An operator Lie algebra can be constructed from a Lie algebra of n× n

matrices by introducing a set of n independent boson creation (b†i ) and

annihilation (bj) operators that obey the commutation relations

[bi, b
†
j ] = Iδij (6.1)

with all other commutators (e.g. [bi, bj ], [b
†
i , b

†
j ], [bi, I], [b

†
j, I]) equal to

zero. The operator algebra is constructed from the matrix algebra by

associating to each matrix A the operator A that is a linear combination

of creation and annihilation operators:

A→ A = b†Ab =
∑

i

∑

j

b†iAijbj (6.2)
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The matrices and their associated operators have isomorphic commuta-

tion relations

[A,B] =
[

b†iAijbj , b
†
rBrsbs

]

= AijBrs

[

b†ibj, b
†
rbs

]

= AijBrs

(

b†iδjrbs − b†rδsibj

)

= b†iAijBjsbs − b†rBrsAsjbj (6.3)

= b†i [A,B]ij bj

= C
where [A,B] = C. This argument is invertible. An algebra of operators

bilinear in boson creation and annihilation operators for n independent

modes has an isomorphic n×nmatrix algebra (or matrix representation)

[A,B] = C ⇔ [A,B] = C A =
∑

ij

b†iAijbj (6.4)

Remark: The 2n + 1 operators bi, b
†
j, I (1 ≤ i, j ≤ n) span the

Heisenberg algebra.

6.2 Fermion Operator Algebras

The success of the calculation above does not depend on the boson

commutation relations (6.1). It depends, rather, on the commutation

relations of bilinear products of these operators

[b†ibj, b
†
rbs] = b†ibsδjr − b†rbjδsi (6.5)

Any set of operatorsXij that satisfies isomorphic commutation relations

[Xij , Xrs] = Xisδjr −Xrjδsi (6.6)

can be used in place of the bilinear combinations b†i bj:

A→ A =
∑

ij

AijXij (6.7)

Another useful set of operators with this property is obtained from

the fermion creation (f †
i ) and annihilation (fj) operators for n indepen-

dent modes. These operators do not even satisfy commutation relations.

Rather, they satisfy anticommutation relations
{

fi, f
†
j

}

= fif
†
j + f †

j fi = Iδij (6.8)
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with all other bilinear anticommutators (e.g. {fi, fj} ,
{

f †
i , f

†
j

}

) equal

to zero. Bilinear combinations of fermion operators satisfy commutation

relations of the form (6.6), for

[

f †
i fj , f

†
rfs

]

= f †
i fjf

†
r fs − f †

rfsf
†
i fj

= f †
i (δjr − f †

rfj)fs − f †
r (δis − f †

i fs)fj (6.9)

= f †
i fsδjr − f †

rfjδsi

As a result, matrix Lie algebras can be associated with bilinear products

of either boson or fermion operators.

[A,B] = C ⇔ [A,B] = C A =
∑

ij

f †
i Aijfj (6.10)

These two matrix algebra → operator algebra mappings are useful for

constructing particular classes of representations for the unitary group

U(n) and its subgroup SU(n). The mapping to a boson operator algebra

greatly simplifies the construction of the symmetric representations of

U(n). The mapping to a fermion operator algebra greatly simplifies the

construction of the antisymmetric representations of U(n). A closely re-

lated mapping allows an elegant construction of the spin representations

of the orthogonal groups.

6.3 First Order Differential Operator Algebras

Yet another useful set of operators that satisfies the commutation rela-

tions (6.6) are the first order differential operators

Xij → xi∂j = xi
∂

∂xj
(6.11)

Then

[A,B] = C ⇔ [A,B] = C A =
∑

ij

xiAij∂j =
∑

ij

AijXij (6.12)

To illustrate the use of this operator combination, we treat the matrix

algebra so(3) of the orthogonal group SO(3)

so(3) =





0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0



 = θ · L (6.13)
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The operator algebra is

(

x1 x2 x3

)





0 θ3 −θ2
−θ3 0 θ1
θ2 −θ1 0









∂1

∂2

∂3



 = θ·L (6.14)

where L1 = x2∂3 − x3∂2, L2 = x3∂1 − x1∂3, L3 = x1∂2 − x2∂1. The two

algebras have isomorphic commutation relations

[Li, Lj ] = −ǫijkLk [Li,Lj ] = −ǫijkLk (6.15)

where Li are 3× 3 matrices and Li are first order differential operators.

As another example, we treat the Lie algebra for the group E(2) =

ISO(2) of rigid motions (translations and rotations) in the x-y plane,

whose matrix algebra may be taken in the form




0 θ 0

−θ 0 0

t1 t2 0



 = θLz + tiTi (6.16)

This describes rotations about an axis perpendicular to the x-y plane

through an angle θ and displacements in the x and y directions by t1
and t2. The associated operator algebra is

(

x1 x2 1
)





0 θ 0

−θ 0 0

t1 t2 0









∂1

∂2

1



 = θLz + tiTi (6.17)

where Lz = x1∂2 − x2∂1 and Ti = ∂i. The matrix algebra and operator

algebra have isomorphic commutation relations.

Differential operator realizations of Lie algebras come about in a nat-

ural way. This is illustrated by two simple examples. The general proce-

dure can easily be inferred from these examples. Both involve the group

of affine transformations of the real line parameterized by points (a, b)

in R2 as follows

(a, b) →
[

ea b

0 1

]

(6.18)

Imagine a function defined for every point p in R1. Once a coordinate

system S is chosen a coordinate, x(p), can be introduced and the function

can be written explicitly as a function of x

f(p)

↓ ↓ (6.19)

fS [x(p)] = fS′ [x′(p)]
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If a new coordinate system S′ is chosen, the value of the function at

p remains unchanged but the new coordinate of p, x′(p), is different.

Therefore the functions fS and fS′ must be different. We ask: How is

fS′ related to fS?

To answer this question, assume x′(p) and x(p) are related by an

infinitesimal group transformation
[

x′

1

]

=

[

1 + da db

0 1

] [

x

1

]

(6.20)

Then

fS′ [x′(p)] = fS [x(x′(p))] (6.21)

We solve for x in terms of x′ by inverting the linear relation (6.20)

fS′ [x′(p)] = fS[x′(1 − da) − db]

= fS[x′] − da x′
∂fS

∂x′
− db

∂fS

∂x′
(6.22)

The infinitesimal generators that transform the function at p are

Xa = −x′ ∂
∂x′

Xb = − ∂

∂x′
(6.23)

These operators have commutation relations that are isomorphic with

those of the original matrix group

[Xa, Xb] = Xb ⇔ [Xa,Xb] = Xb (6.24)

As a second example we consider functions G(x, y) defined on the

plane R2 that parameterizes the affine group. By repeating the argu-

ments above

GS′(x′, y′) = GS(x, y) (6.25)

where (x′, y′) and (x, y) are related by
[

x′ y′

0 1

]

=

[

1 + da db

0 1

] [

x y

0 1

]

(6.26)

Inverting the infinitesimal transformation, we have

GS′(x′, y′) = GS [x = (1 − da)x′, y = (1 − da)y′ − db] (6.27)

= GS(x′, y′) +

{

da

(

−x′ ∂
∂x′

− y′
∂

∂y′

)

+ db

(

− ∂

∂y′

)}

GS(x′, y′)

The two infinitesimal generators are

Xa = −x′∂/∂x′ − y′∂/∂y′

Xb = −∂/∂y′ (6.28)
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The commutation relations are preserved

[Xa, Xb] = Xb ⇔ [Xx,Xb] = Xb (6.29)

These two examples serve to demonstrate that a single matrix algebra

can have many different operator realizations.

Remark: In the example above we have adopted the “passive” inter-

pretation of group action. That is, the coordinates of a point changed by

virtue of a choice of a different coordinate system, but the value of the

function did not. Therefore the particular form of the function was re-

quired to change. There is another interpretation of the group action —

the “active” interpretation. In this interpretation the group operation

defines a new function at the initial point in accordance with

fS′ [x(p)] = fS[x′(p)] (6.30)

(c.f., Eq. (6.19)). Infinitesimal generators for changes in the function

under the active interpretation can be computed. They are exactly the

same as those computed for the passive interpretation, except for a sign

change. This sign difference is encountered in the theory of rotating

bodies as the difference in commutation relations for the generators of

rotation in a laboratory-fixed frame and a body-fixed frame.

The “active” and “passive” interpretations of group operations are

related by the Equivalence Principle (cf., Sec. 14.2).

6.4 Conclusion

Matrix algebra to operator algebra isomorphisms are easily constructed

by associating to each matrix A in a matrix Lie algebra an operator

A =
∑

i

∑

j AijXij . If the operators Xij obey the simple commutation

relations (6.6), the commutation relations of the matrix Lie algebra and

the operator algebra are isomorphic: [A,B] = C ⇔ [A,B] = C. Under

these conditions, complicated commutators in an operator algebra can

be replaced by simpler commutators in the matrix algebra. These results

extend to the respective Lie groups: products of exponentials of oper-

ators can be replaced by products of exponentials of the corresponding

matrices with a little care: eAeB = eD ⇔ eAeB = eD.
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6.5 Problems

1. Bilinear products involving one creation and one annihilation operator

for two modes generate a four-dimensional Lie algebra with basis vectors

a†iaj , 1 ≤ i, j ≤ 2.

a. Show that n̂ = a†1a1 + a†2a2 commutes with all the operators in this

set.

b. If n̂ is chosen as one basis vector in this four dimensional space, the

remaining three operators can be chosen as a†1a1 − a†2a2, a
†
1a2,

and a†2a1. Construct their commutation relations.

c. These calculations simplify considerably under the operator to matrix

mapping

a†1a1 + a†2a2 a†1a1 − a†2a2 a†1a2 a†2a1

↓ ↓ ↓ ↓
[

1 0

0 1

] [

1 0

0 −1

] [

0 1

0 0

] [

0 0

1 0

]

d. Show that the three operators 1
2 (a†1a1−a†2a2), a

†
1a2, and a†2a1 satisfy

commutation relations isomorphic to the comutation relations

of the angular momentum algebra Jz, J±. In particular, show

Jz = 1
2 (a†1a1 − a†2a2)

Jx = 1
2 (J+ + J−) = 1

2 (a†1a2 + a†2a1)

Jy = 1
2i(J+ − J−) = 1

2i(a
†
1a2 − a†2a1)

e. Evaluate J2 = J2
x +J2

y +J2
z in terms of the creation and annihilation

operators, and show

J2 = (
1

2
n̂)(

1

2
n̂+ 1)

2. Schwinger representation of angular momentum. Introduce

two independent modes. Assume that the quantum state of mode i

(i = 1, 2) is |ni〉, where ni is the number of excitations in mode i.

Assume also that the creation and annihilation operators a†i and ai act

on state |ni〉 in the usual way:

a†i |ni〉 =
√
ni + 1 |ni + 1〉 ai|ni〉 =

√
ni |ni − 1〉
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Choose as a set of basis vectors the direct product states |n1〉 ⊗ |n2〉 =

|n1, n2〉. Define

| j

m
〉 = |n1, n2〉 j =

1

2
(n1 + n2), m =

1

2
(n1 − n2)

a. Identify the lattice sites in Fig. 6.1 with the states |n1, n2〉 = |jm〉,
the diagonal operator 1

2 (a†1a1 − a†2a2) with the operator Jz, and

the shift operators a†1a2, a
†
2a1 with J+ and J−.

b. Show that the four operators a†iaj leave invariant the sum n1 + n2.

c. J2|jm〉 = j(j + 1)|jm〉.
d. Jz|jm〉 = m|jm〉.
e. J+|jm〉 = a†1a2|n1, n2〉 =

√
n1 + 1

√
n2 |n1 + 1, n2 − 1〉 = |j,m +

1〉√j +m+ 1
√
j −m.

f. J−|jm〉 = a†2a1|n1, n2〉 =
√
n1

√
n2 + 1 |n1 − 1, n2 + 1〉 = |j,m −

1〉√j +m
√
j −m+ 1.

g. J±|jm〉 = |j,m±1〉
√

(j ±m+ 1)(j ∓m). NB: J+|j, j〉 = 0, J−|j,−j〉 =

0.

h. 〈j′m′|J±|jm〉 =
√

(j′ ±m′)(j ∓m) δj′j δm′,m±1.

3. Basis vectors in the Lie algebra u(3) for the group U(3) have

commutation relations that are isomorphic to the commutation rela-

tions of the nine boson operators a†iaj , 1 ≤ i, j ≤ 3. Choose a set

of basis vectors for a matrix representation of this algebra of the form

|n1, n2, n3〉 = |n1〉⊗ |n2〉 ⊗ |n3〉, where for example bi|ni〉 = |ni − 1〉√ni,

etc.

a. Show N =
∑3

i=1 ni is not changed by the action of any of the nine

operators in this set.

b. Show that the dimension, D, of this representation is D = (N +

3 − 1)!/N !(3 − 1)!. This is the number of ways 3 nonnegative

integers can be chosen whose sum is N (Bose-Einstein counting

problem). In higher dimensions (n) replace 3 → n. D is also the

number of monomials of degree N in the Taylor series expansion

of a function f(x1, x2, . . . , xn) of n variables.

c. Compute the matrix elements of all operators b†ibj in this represen-

tation:

〈n′
1, n

′
2, n

′
3|b†ibj |n1, n2, n3〉 (6.31)
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Fig. 6.1. Identification of the angular momentum operators with operators
for two boson modes simplifies computation of the angular momentum matrix
elements.

d. Is there some operator in the Lie algebra that maps to the identity

matrix, ID, in this representation?

〈n′
1, n

′
2, n

′
3|O|n1, n2, n3〉 = IDδn′

1
,n1
δn′

2
,n2
δn′

3
,n3

(6.32)

What is O?

4. Repeat the steps of Problem 3, replacing the boson operators b†ibj
by Fermion operators f †

i fj. What is now the dimension of this repre-

sentation?

5. Construct operators d, d† defined formally from the standard cre-

ation and annihilation operators a, a† as follows:

[

d

d†

]

=

[

A B

C D

] [

a

a†

]

a. Show that if the new operators d, d† are to satisfy standard commu-

tation relations [d, d†] = 1 and [d, d] = [d†, d†] = 0, the four

matrix elements must satisfy AD −BC = 1.
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b. Argue that the commutation relations are unvariant under the group

Sp(2;R) = SL(2;R).

c. Show that under Sp(2;R), linear combinations of the coordinate and

differential operators x, ∂ preserve the commutation relations.

In particular, show that

[

a

a†

]

=
1√
2

[

1 1

−1 1

] [

∂

x

]

preserve commutation relations.

d. Replace a → (a1, a2, . . . , an) and similarly for a† and their images

d, d† under some linear transformation as given above, with

A,B,C,D now n × n matrices. Determine the conditions on

these n× n matrices under which the structure of the commu-

tation relations is preserved. In particular, show

ADt −BCt = In ABt = BAt CDt = DCt

Show that these transformations belong to the Lie group Sp(2n;R).

6. The N -dimensional isotropic harmonic oscillator has hamiltonian

H = ~ω

N
∑

i=1

(a†iai +
1

2
)

and eigenstates |n1, n2, . . . , nN 〉.

a. Show that the degeneracy of the multiplet containing n quanta, with

energy ~ω(n+ N
2 ) is deg(N,n) = (n+N − 1)!/n!(N − 1)!. This

solution to the Bose-Einstein counting problem is exactly equal

to the number of coefficients of degree n in the Taylor series

expansion of a function of N variables: f(x1, x2, . . . , xN ).

b. Show that the symmetry group of this hamiltonian has Lie algebra

spanned by the N2 operators a†iaj. This is isomorphic to the

Lie algebra u(N). Since
[

H, a†iaj

]

= 0, this algebra is a direct

sum of a simple Lie algebra, su(N), plus the one dimensional

algebra spanned by H.

c. If the generators a†iaj that span the invariance algebra are supple-

mented with the single creation and annihilation operators a†i
and aj , as well as their commutator I, the resulting set of oper-

ators closes to form an (N + 1)2 dimensional Lie algebra that is
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nonsemisimple. This is called the spectrum generating algebra of

the isotropic harmonic oscillator. Show that there is a sequence

of operations drawn from this algebra that transform any state

in a multiplet with n excitations to any state in a multiplet with

n′ excitations.

8. The set of matrices R,S, T, U, . . . belong to a Lie algebra of n× n

matrices, a† = (a†1, a
†
2, . . . , a

†
n) is a row vector of creation operators for

n boson modes, and a is its adjoint, a column vector of annihilation

operators. Define R = a†Ra = a†iRijaj ,and similarly for S, T ,U , . . ..

a. [R,S] = T ⇔ [R,S] = T
b. eReS = eU ⇔ eReS = eU

9. The Rodriguez formula is often used to generate the Hermite poly-

nomials.

Hn(x) = ex2

(

− d

dx

)n

e−x2

a. Show
[

d
dx , e

−x2/2
]

= −xe−x2/2.

b. Use this result to show

(

− d

dx

)

e−x2

= e−x2/2

(

x− d

dx

)

e−x2/2 and

(

− d

dx

)n

e−x2

= e−x2/2

(

x− d

dx

)n

e−x2/2

c. As a result

Hn(x)e−x2/2 = e+x2/2

(

− d

dx

)n

e−x2

=

(

x− d

dx

)n

e−x2/2

d. Introduce the annihilation operator a = 1√
2
(x+ d

dx), define the nor-

malized ground state 〈x|0〉 by a〈x|0〉 = 0. Solve this equation,

normalize the solution, and show 〈x|0〉 = e−x2/2/
√

1
√
π.

e. Introduce the creation operator a† = 1√
2
(x − d

dx) and show

〈x|n〉 =
(
√

2a†)n

√
2nn!

〈x|0〉 =
Hn(x)e−x2/2

√

2nn!
√
π

= ψn(x) (6.33)



6.5 Problems 109

where ψn(x) is the nth normalized harmonic oscillator eigen-

state 〈x|n〉 = (a†)n

√
n!

〈x|0〉.

10. Assume a set of n harmonic oscillators interact through an angular

momentum term (Lij = a†iaj−a†jai) and a quadrupole interaction (Qij =

a†iaj + a†jai).

a. Show that the hamiltonian for this system is

H =

n
∑

i=1

~ωi

(

a†iai +
1

2

)

+i
∑

i<j

θij

(

a†iaj − a†jai

)

+
∑

i≤j

qij

(

a†iaj + a†jai

)

b. Show that this hamiltonian can be represented by a hermitian matrix.

Show that for i ≤ jthe matrix elements are

Γij = ~ωiδij + (q + iθ)ij

with Γ∗
ji = Γij .

c. Show that an orthogonal transformation can be constructed so that

the hamiltonian can be expressed in terms of n independent

oscillators represented by creation and annihilation operators

bi = mijaj : H =
∑n

i=1 ~ω
′

i(b
†
i bi + 1

2 ) + cst.. Express the ampli-

tudes mij in terms of the eigenvectors of Γ(H).

d. Compute the shift in the zero point energy (“cst.”).


