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Almost all Lie groups encountered in the physical sciences are matrix
groups. In this chapter we describe most of the matrix groups that are
typically encountered. These include the general linear groups GL(n; F )
of nonsingular n × n matrices over the fields F of real numbers, complex
numbers, and quaternions, and various of their subgroups obtained by
imposing linear, bilinear and quadratic, and n-linear constraints on these
matrix groups.

3.1 Preliminaries

It is first useful to state a simple theorem.

Definition: A subgroup H of G (also H ⊂ G) is a subset of G that

is also a group under the group multiplication of G.

Example: The set of matrices

[

a b

0 1

a

]

(3.1)

is a subgroup of SL(2;R).

37
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Theorem: If H1 ⊂ G and H2 ⊂ G are subgroups of G then their

intersection H12 = H1 ∩H2 is a subgroup of G.

Proof: Verify that the four group axioms are satisfied for all opera-

tions in H1 ∩H2.

Example: If H1 is the 2-dimensional subgroup of SL(2;R) described

in (3.1) above andH2 is the one-dimensional subgroup of 2×2 orthogonal

matrices

H2 = SO(2) =

[

cos θ sin θ

− sin θ cos θ

]

θ ∈ [0, 2π) (3.2)

then the intersectionH1∩H2 is the zero dimensional subgroup containing

the two discrete group operations ±I2.
The matrix groups that we consider are defined over the fields of real

numbers (F = R), complex numbers (F = C), and quaternions (F = Q).

The complex numbers can be constructed from pairs of real numbers by

adjoining a square root of −1. Their multiplication properties can be

analyzed by mapping the pair of real numbers into 2 × 2 matrices

c = (a, b) = a+ ib a ∈ R, b ∈ R, i2 = −1

(a, b) −→
[

a b

−b a

]

i = (0, 1) −→
[

0 1

−1 0

]

(3.3)

In an analogous way, the quaternions can be constructed from pairs of

complex numbers by adjoining another square root of −1, and their mul-

tiplication properties analyzed by mapping the pair of complex numbers

into 2 × 2 matrices

q = (c1, c2) = c1 + jc2

c1 = a1 + ib1 ∈ C

c2 = a2 + ib2 ∈ C

i2 = −1, j2 = −1, ij + ji = 0

(c1, c2) −→
[

c1 c2
−c∗2 c∗1

]

(3.4)

The mapping of two complex numbers into a 2×2 matrix representing a

quaterion can also be expressed as a mapping of four real numbers into

a 2 × 2 matrix representing a quaterion:

q0 + q1I + q2J + q3K →
[

q0 + iq3 iq1 + q2
iq1 − q2 q0 − iq3

]

The four basis vectors 1, I,J ,K for this map are related to the four
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Pauli spin matrices, and i is the usual square root of −1 introduced

above in Eq. (3.3). The details are presented in Problem # 1 at the end

of this chapter.

We list, in order, matrix groups on which no constraints are imposed

(1), on which only linear constraints are imposed (2)–(7), on which bi-

linear and quadratic constraints are imposed (8)–(11), and on which

n-linear or multilinear constraints [det(M) = +1] are imposed (12).

3.2 No Constraints

1. GL(n;F ). General Linear groups consist of nonsingular n×n ma-

trices over the real, complex, or quaternion fields. The group GL(1;Q)

consists of 1 × 1 quaternion, or 2 × 2 complex matrices that satisfy

det

[

a1 + ib1 a2 + ib2
−a2 + ib2 a1 − ib1

]

= a2
1 + b21 + a2

2 + b22 6= 0 (3.5)

The determinant of an n×n matrix A with matrix elements Aj
i is defined

by

det (A) =
∑

I

∑

J

1

n!
ǫi1i2...in Aj1

i1
Aj2

i2
. . . Ajn

in

ǫj1j2...jn

Here ǫi1i2...in and its covariant version are the Levi-Civita symbols: +1

for an even permutation of the integers 1, 2, . . . , n; −1 for an odd permu-

tation; and 0 if two or more values of the indices i∗ are equal. With this

definition there is no difficulty computing the determinant of a matrix

containing matrix elements that do not commute (quaternions).

All remaining matrix groups in this list are subgroups of GL(n;F ).

3.3 Linear Constraints

These matrix groups all have a block structure or an echelon block struc-

ture. The linear constraints simply require specific blocks of matrix el-

ements to vanish, or require some diagonal matrix elements to be +1.

The structures of all these matrix groups are exhibited in Fig. 3.1.

2. UT (p, q). Upper Triangular groups. The n×n (n = p+q) matrix

is partitioned into block form and an off-diagonal block is constrained

to be zero

miα = 0
p+ 1 ≤ i ≤ p+ q

1 ≤ α ≤ p
(3.6)
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Example: The action of transformations in UT (1, 1) on the plane R2

is as follows:

[

x′

y′

]

=

[

a b

0 d

] [

x

y

]

=

[

ax+ by

dy

]

(3.7)

The x-axis y = 0 remains invariant. It is an invariant subspace (y =

0 → y′ = 0), mapped into itself by all group operations in UT (1, 1).

The y-axis x = 0 is not invariant. More generally, if UT (p, q) acts on

the direct sum vector space Vp ⊕ Vq, the subspace Vq is invariant while

Vp is not. For lower triangular matrices reverse p and q.

3. HT (p, q). This is a subgroup of UT (p, q) obtained by imposing the

additional linear constraints on the matrix elements of a diagonal block

mij − δij = 0
p+ 1 ≤ i ≤ p+ q

p+ 1 ≤ j ≤ p+ q
(3.8)

Example: Affine transformations in HT (1, 1) (m22 = 1) act on the

x-axis by x→ x′ = ax+ b:

[

x′

1

]

=

[

a b

0 1

] [

x

1

]

=

[

ax+ b

1

]

(3.9)

4. UT (p, q, r). This matrix group consists of upper triangular matri-

ces that are the intersection of the matrix groups UT (p, q+ r)∩UT (p+

q, r).

Example: We consider 4 × 4 complex matrices with the structure











1 ⋆ ⋆ ⋆

0

0
SU(1, 1)

⋆

⋆

0 0 0 1











(3.10)

where the 2×2 matrix SU(1, 1) is defined below in (3.30). Matrix groups

with the structure (3.10) are encountered in treatments of squeezed

states of the electromagnetic field and scattering of projectiles from sim-

ple diatomic molecules [39, 40].

5. Sol(n) = UT (1, 1, 1, · · · , 1). Solvable groups are strictly upper

triangular.
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2. 3.

q

UT(p,q) HT(p,q)
.

4. pv

r

= ∩
q

UT(p,q,r) = UT(p,q+r) ∩ UT(p+q,r)
.

λ1

•••

λ2

λn

λ3

•••

1
1

1

1

Ip

Iq

p

5. 6. 7.

q

Sol(n) Nil(n) A(p,q)

Fig. 3.1. Structure of the matrix groups defined by linear constraints.

Example: We consider the subgroup of 3× 3 matrices in UT (1, 1, 1)

of the form





1 l d

0 η r

0 0 1



 (3.11)

These matrices have the same structure as the group generated by ex-

ponentials of the photon number operator (n̂ = a†a), the creation (a†)

and annihilation (a) operators, and their commutator (I = aa† − a†a =

[a, a†]). We will use this identification between operator and matrix

groups to develop some powerful operator disentangling theorems.
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6. Nil(n). Nilpotent groups are subgroups of Sol(n) whose diagonal

matrix elements are all +1.

Example: Matrices in Nil(3) of the form




1 l d

0 1 r

0 0 1



 (3.12)

are closely related to the photon creation and annihilation operators

(a†, a, I) and the group generated by the exponentials of the position

and momentum operators (p and q) and their commutator [p, q] = ~

i .

This 3×3 matrix group is called the Heisenberg group. (It is technically

the covering group of the Heisenberg group.) The set of change of basis

transformations 〈p|q〉 = 1√
2
e2πipq/h encountered in Quantum Mechanics

is a unitary representation of this group of 3 × 3 matrices.

7. A(p, q). This group consists of matrices that are the sum of an

identity matrix and the upper right hand off-diagonal block of a (p, q)

blocked matrix. Its matrix elements satisfy

Ai,j = δi,j 1 ≤ i, j ≤ p

Aα,β = δα,β p+ 1 ≤ α, β ≤ p+ q

Aα,j = 0

Ai,β = arbitrary

This groups is abelian or commutative: AB = BA for all elements

(matrices) in this group.

Example: We consider the translation subgroup A(1, 1) of the affine

group of transformations of the x-axis (3.9): x→ x′ = x+ a. Successive

transformations of this type commute
[

1 a

0 1

] [

1 b

0 1

]

=

[

1 a+ b

0 1

]

=

[

1 b

0 1

] [

1 a

0 1

]

(3.13)

For A(p, q), p and q are p× q matrices.

3.4 Bilinear and Quadratic Constraints

In (8)–(11) we treat groups that preserve a metric, represented by a

matrix G. They all satisfy the bilinear or quadratic constraint condition

M †GM = G. If G is symmetric positive-definite we can set G = In (8).

If G is nonsingular and symmetric but indefinite we can set G = Ip,q (9).

If G is nonsingular and antisymmetric, we can take G =

[

0 In
−In 0

]
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(10). These are the groups that leave Hamilton’s equations of motion

invariant in form. A large spectrum of interesting groups occurs if G is

singular (11). The matrix elements in these cases are defined by both

bilinear and linear conditions.

8. Compact metric preserving groups. Matrices M in these

groups satisfy the quadratic condition M †GM = G, where G is sym-

metric positive-definite, and which we can take as In

R O(n) Orthogonal Group

G = In C U(n) Unitary Group

Q Sp(n) Symplectic Group

(3.14)

These are groups of rotations that leave invariant a positive-definite

metric in a real, complex, or quaternion valued n-dimensional linear

vector space. The manifolds that parameterize these groups are compact

because the condition M †GM = G defines matrices that form closed

bounded subsets of the manifolds that parameterize the matrix groups

GL(n;F ), F = R,C,Q.

Example: As examples we introduce real 3 × 3 matrices of rigid

rotations (and inversions) in R3, complex 2 × 2 matrices that preserve

inner products in a complex two-dimensional linear vector space C2 (of

spin states, for example), and quaternion valued 1 × 1 matrices that

preserve length in a one-dimensional linear vector space over Q

M †I3M = I3 M ∈ O(3) F = R

M †I2M = I2 M ∈ U(2) F = C

M †I1M = I1 M ∈ Sp(1) F = Q

(3.15)

The group SU(1;Q) is the subgroup of GL(1;Q) (3.5) subject to the

condition

a2
1 + b21 + a2

2 + b22 = 1 (3.16)

This group is geometrically equivalent to the 3-dimensional sphere em-

bedded in R4

SL(1;Q) ∼ S3 ⊂ R4 (3.17)

We will see many other relations between groups and geometry.

9. Noncompact metric-preserving groups. Matrices in these

groups leave invariant a nonsingular symmetric but indefinite metric G,

which we take as G = Ip,q , p + q = n. This is a diagonal matrix with

p elements +1 and q elements −1 along the diagonal. Matrices M in
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these groups satisfy the quadratic condition M †GM = G, where

R O(p, q) Orthogonal Group

G = Ip,q C U(p, q) Unitary Group

Q Sp(p, q) Symplectic Group

(3.18)

The manifolds that parameterize these groups are noncompact when p 6=
0, q 6= 0. These noncompact groups are related by analytic continuation

to corresponding compact metric-preserving groups.

Example: The Lorentz group preserves the invariant x2 + y2 + z2 −
(ct)2 and is thus defined by the condition

M tI3,1M = I3,1

[

At Ct

Bt Dt

] [

I3 0

0 −1

] [

A B

C D

]

=

[

AtA− CtC AtB − CtD

BtA−DtC BtB −DtD

]

=

[

I3 0

0 −1

]

(3.19)

There are much better ways to parameterize this group. These involve

exponentiating its Lie algebra.

10. Antisymmetric metric-preserving groups. The metric G is

an N ×N nonsingular antisymmetric matrix

M tGM = G F =
R Sp(N,R)

C Sp(N,C)
(3.20)

Since det(G) = det(Gt) = det(−G) = (−)Ndet(G), N must be even:

N = 2n. The metric matrix can be chosen to have the canonical forms

G =

[

0 In
−In 0

]

or G =
∑n

α=1
⊕ [iσy]α. This consists of n copies of

the matrix iσy =

[

0 1

−1 0

]

along the diagonal. Symplectic transforma-

tions in Sp(2n;R) leave invariant the form of the classical hamiltonian

equations of motion.

Example: The symplectic group Sp(2;R) ⊂ GL(2;R) satisfies the

constraint
[

a c

b d

] [

0 1

−1 0

] [

a b

c d

]

=

[

0 ad− bc

bc− ad 0

]

=

[

0 1

−1 0

]

(3.21)

The constraint is ad− bc = +1. Thus, Sp(2;R) = SL(2;R).
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11. General metric-preserving groups. Matrices in these groups

leave invariant a singular metric G.

R O(n;G)

C U(n;G)

Q Sp(n;G)

(3.22)

Example: We consider 4 × 4 real matrices and choose

G =

[

I3 0

0 0

]

(3.23)

Partitioning M into blocks and imposing the condition MGM t = G, we

find
[

A B

C D

] [

I3 0

0 0

] [

At Ct

Bt D

]

=

[

AAt ACt

CAt CCt

]

=

[

I3 0

0 0

]

(3.24)

This results in the conditions

AAt = I3 quadratic constraints, A ∈ O(3)

C = 0 linear constraints

B,D arbitrary no constraints

The subgroup obtained by setting the 1× 1 submatrix D equal to +1 is

the Euclidean group E(3) whose action on the coordinates (x, y, z) of a

point in R3 is









x′

y′

z′

1









=









A

t1
t2
t3

0 0 0 1

















x

y

z

1









=









A





x

y

z





+ t1
+ t2
+ t3

1









(3.25)

That is, the coordinates are rotated by the matrix A and translated by

the vector t. By closely similar arguments the Poincaré group, consisting

of Lorentz transformations [A ∈ SO(3, 1), AI3,1A
t = I3,1 (3.17)] and

space-time displacements is isomorphic to the real 5 × 5 matrix group

Poincaré group :









O(3, 1) t

0 1









(3.26)

The Galilei group consists of rotations in R3, transformations to a co-

ordinate system moving with velocity v, and displacements of space (t)



46 Matrix Groups

and time (t4) coordinates. It is isomorphic to the group of 5×5 matrices

with the structure

Galilei group :















O(3) v t

0 1 t4
0 0 1















(3.27)

3.5 Multilinear Constraints

It is possible to impose trilinear, 4-linear, . . . , constraints on n× n ma-

trices. This requires a great deal of effort, and leads to few results,

principle among which are the five exceptional Lie groups that we will

meet in Chapter 10. The only multilinear constraint that leads system-

atically to a large class of Lie groups is the n-linear constraint, defined

by the determinant.

12. Special Linear Groups, or Unimodular Groups. These are

defined by the condition

detM = +1 F =

R SL(n,R)

C SL(n,C)

Q SL(n,Q)

(3.28)

Example: The group SL(2;R) has previously been encountered. The

subset of matrices

[

a b

c d

]

∈ SL(2;R) ⊂ GL(2;R) satisfies the con-

straint ad− bc = +1, which is bilinear.

3.6 Intersections of Groups

Some important groups are intersections of those listed above

SO(n) = O(n) ∩ SL(n;R)

SO(p, q) = O(p, q) ∩ SL(p+ q;R)

SU(n) = U(n) ∩ SL(n;C)

SU(p, q) = U(p, q) ∩ SL(p+ q;C)

(3.29)

Example: We construct the three-dimensional noncompact group

SU(1, 1) by taking the intersection of U(1, 1) with SL(2;C):

SU(1, 1) = U(1, 1) ∩ SL(2;C) →
[

a b

b∗ a∗

]

(3.30)
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where a∗a− b∗b = +1.

3.7 Embedded Groups

The unitary group U(n) consists of n × n complex matrices that obey

the constraint U †U = In. For some purposes it is useful to represent

this group as a group of real matrices. This is done by replacing each

of the complex entries in U(n) by a real 2 × 2 matrix according to the

prescription given in Eq. (3.3). The resulting matrix is a real 2n × 2n

matrix M . This matrix inherits the constraint that comes with the

unitary group, U †U = In. This constraint now appears in the form

M tM = I2n. We have been able to replace † by t since the matrices

are real, and must replace In by I2n since the matrices are 2n × 2n.

In other words, the matrices M obey the condition that determines

orthogonal groups. This group of 2n× 2n matrices forms an orthogonal

representation of the unitary group. It is a subgroup of SO(2n). This

matrix group is called OU(2n). Symbolically,

U(n)
C→2×2 R−→ OU(2n) ⊂ SO(2n) (3.31)

There is an even more compelling reason to carry out the same type

of replacement of quaternions by 2 × 2 complex matrices. Quaternions

do not commute, as do real and complex numbers. Rather than worry

about the order in which quaternions are written down in carrying out

computations (such as constructing the determinant of a matrix), it

is usually safer and more convenient to replace each quaternion in an

n × n matrix by a 2 × 2 complex matrix using the embedding shown

in Eq. (3.4). For the metric-preserving quaternion group U(n;Q) =

Sp(n) whose matrices obey U †U = In, this process generates 2n × 2n

complex matrices M that inherit the constraint in the formM †M = I2n.

In other words, the matrices M obey the condition that determines

unitary groups (over C). This group of 2n×2n matrices forms a unitary

representation of the symplectic group. It is a subgroup of SU(2n). This

matrix group is called USp(2n). Symbolically,

Sp(n)
Q→2×2 C−→ USp(2n) ⊂ SU(2n) (3.32)

The groupsOU(2n) and USp(2n) will appear in Chapter 11 (cf., Table

11.2) in the classification of the real forms of the simple Lie groups.
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3.8 Modular Groups

We close with a useful aside. We have not considered matrices over

the integers because they lack the geometric structure contributed by

the continuous fields R, C, and Q. However, matrices over the integers

play an important role in some areas of Lie group theory (representation

theory of noncompact unimodular groups).

There are in fact three distinct groups over the integers that are some-

times confused:

(i) GL(n;Z): If m ∈ GL(n;Z), det(m) = ±1.

(ii) SL(n;Z): If m ∈ SL(n;Z), det(m) = +1.

(iii) PSL(n;Z), n even: PSL(n;Z) = SL(n;Z)/ {In,−In}.

For n = 2 these groups of matrices have the form

[

a b

c d

]

, with a, b, c, d

all integers. If det(m) = n, with n an integer, then det(m−1) = 1/n.

Since the determinant of any matrix composed of integers must be an

integer, the condition is that det(m) = ±1. The subset of GL(2;Z) with

determinant = +1 forms the subgroup SL(2;Z) ⊂ GL(2;Z). The mod-

ular group PSL(2;Z) is obtained by identifying each pair of matrices in

SL(2;Z) of the form

[

−a −b
−c −d

]

≃
[

a b

c d

]

.

As a hint of the useful properties of these groups, we consider the

matrix
[

1 1

1 0

]

∈ GL(n;Z) (3.33)

Then
[

1 1

1 0

]n

=

[

F (n+ 1) F (n)

F (n) F (n− 1)

]

(3.34)

where F (n) is the nth Fibonacci number, defined recursively by

F (n) = F (n− 1) + F (n− 2)

n 0 1 2 3 4 5 6 7 · · ·
F (n) 0 1 1 2 3 5 8 13 · · ·

The proof by induction is simple. It proceeds by computation

[

1 1

1 0

]n+1

=

[

1 1

1 0

] [

F (n+ 1) F (n)

F (n) F (n− 1)

]

=
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[

F (n+ 1) + F (n) F (n) + F (n− 1)

F (n+ 1) F (n)

]

=

[

F (n+ 2) F (n+ 1)

F (n+ 1) F (n)

]

(3.35)

and by comparison of initial conditions for n = 1 [F (0) = 0, F (1) = 1].

Many other recursive relations among the integers are possible using

different matrices in the groups GL(2;Z), GL(3;Z), etc.

The group GL(n;Z) has important subgroups defined by imposing

linear, quadratic, and multilinear constraints on the matrix elements, in

exact analogy with GL(n;R).

Imposing linear constraints generates subgroups with the structures

given in Examples 2 through 7 above. The only remark necessary is

that for the analogs of Example 5 (solvable groups) the diagonal matrix

elements can only be ±1.

Imposing quadratic constraints, for example M tInM = In, generates

a subgroup for which the sum of the squares of the matrix elements in

each row or column is +1. Since the matrix elements themselves can

only be ±1, 0, this group, O(n;Z), consists of n × n matrices in which

all but one matrix element in every row or column is zero, and the

nonzero matrix element is ±1. An important subgroup of O(n;Z) is

Sn, in which the nonzero matrix elements are all +1. This is the n× n

faithful permutation representation Pn of the symmetric group Sn.

Finally, the multilinear condition det(m) = +1 defines the unimodular

subgroup SL(n;Z) of GL(n;Z).

Additional important groups are intersections of those just described.

For example, the alternating group An consists of unimodular matrices

in Pn:

An = Pn ∩ SL(n;Z) (3.36)

Example: The group O(2;Z) consists of the 8 = 22 × 2! matrices

±
[

1 0

0 1

]

±
[

1 0

0 −1

]

±
[

0 1

1 0

]

±
[

0 1

−1 0

]

(3.37)

The group O(3, Z) has order 23×3! = 48. Its subgroup S3 of order 6=3!

consists of the six matrices





1 0 0

0 1 0

0 0 1









0 1 0

0 0 1

1 0 0









0 0 1

1 0 0

0 1 0
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0 1 0

1 0 0

0 0 1









0 0 1

0 1 0

1 0 0









1 0 0

0 0 1

0 1 0



 (3.38)

Its alternating subgroup A3 ⊂ S3 ⊂ O(3, Z) consists of the three matri-

ces with positive determinant, contained in the first row.

3.9 Conclusion

In this chapter we have taken advantage of a surprising observation:

that most of the Lie groups encountered in applied (as well as pure)

mathematics, the physical sciences, and the engineering disciplines are

matrix groups. Most of the matrix groups typically encountered have

been listed here. They consist of the general linear groups of n × n

nonsingular matrices over the fields of real numbers, complex numbers,

and quaternions, as well as subgroups obtained by imposing linear con-

ditions, bilinear and quadratic conditions, and multilinear conditions on

the matrix elements of the n× n matrices. Lie groups not encountered

in the simple construction presented here consist primarily of some real

forms (analytic continuations, encountered in Chapter 11) of those en-

countered here, the exceptional Lie groups G2, F4, E6, E7, E8 and their

real forms (encountered in Chapters 10 and 11), and covering groups of

noncompact simple Lie groups such as SL(2;R) (encountered in Chap-

ter 7). We have in addition opened a door to analogs of Lie groups over

the integers, GL(n,Z), SL(n;Z) and PSL(n,Z). Matrix groups over

finite fields are also of great interest, but fall outside the scope of our

discussions.

3.10 Problems

1. Use the mapping (3.4) to construct a 2 × 2 matrix representation of

the quaternions over the field of complex numbers. In particular, make

the following associations, where IJ = −K:

1 =

[

1 0

0 1

]

I = i

[

0 1

1 0

]

J = i

[

0 −i
i 0

]

K = i

[

1 0

0 −1

]

I2 iσx iσy iσz

(3.39)
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Here σx, σy, σz are the Pauli spin matrices, and i is the usual square

root of −1. Show that any pair of the unit quaternions anticommute:

i.e. {I,J } = IJ + J I = 0.

2. Show that the unit quaternions I,J ,K generate a group of order

8 under multiplication. Show that this group is isomorphic to O(2;Z).

Exhibit this isomorphism explicitly.

3. Show that SU(1;Q) ∼ SU(2;C).

4. Show that the dimensionalities (over the real field) of the general

linear groups and their special linear subgroups are

GL(n;R) = n2 SL(n;R) = n2 − 1

GL(n;C) = 2n2 SL(n;C) = 2n2 − 2

GL(n;Q) = 4n2

5. Show that if the n× n metric matrix G is symmetric, nonsingular,

and positive definite, then we can set G = In in the definitions in Ex-

ample 8. If the n × n metric matrix G is symmetric, nonsingular, and

indefinite, then we can set G = Ip,q in the definitions in Example 9, for

suitable positive integers p and q, with p+ q = n.

6. Show that it is possible to define subgroups SLi(n;C) of GL(n;C)

by the conditions

SL1(n;C) : det(M) = eiφ 2n2 − 1

SL2(n;C) : det(M) = eλ 2n2 − 1

SL3(n;C) : det(M) = r 2n2 − 1

SL(n;C) : det(M) = +1 2n2 − 2

where φ, λ, r are real and r 6= 0. Show that the dimensions of these

three subgroups are 2n2 − 1 and that SL3(n;C) is disconnected. It

consists of two topologically identical copies of a 2n2 − 1 dimensional

manifold, one of which contains the identity. Show that SL(n;C) =

SL1(n;C) ∩ SL2(n;C). Do these results extend under: field restriction

C → R?; field extension C → Q?

7. A subgroup of UT (1, 1) includes matrices of the form

[

−1 a

0 1

]

,

a ∈ R. Show that the underlying group manifold consists of two copies

of the real line R1. If matrices of the form

[

1 a

0 −1

]

are also included,

then the parameterizing manifold consists of how many copies of R1?
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8. Compute the dimensions of the real matrix groups in Examples

(2)–(7) over the real field and show:

Group Dimension

UT (p, q) p2 + q2 + pq

HT (p, q) p(p+ q)

UT (p, q, r) p2 + q2 + r2 + pq + pr + qr

Sol(n) n(n+ 1)/2

Nil(n) n(n− 1)/2

A(p, q) pq

What happens to these dimensions if the matrix groups are over the

field of complex numbers? Quaternions?

9. Newton’s equations of motion are F = dp/dt. In the Lorentz gauge

Maxwell’s equations can be written in the form

(

∇2 − 1

c2
∂2

∂t2

)

Aµ(x, t) = −4π

c
jµ.

These equations can be expressed in a different coordinate system usisng

either Galilean or Poincaré transformations. Verify that the equations

do or do not remain invariant in form under these transformations, as

follows:

Transformation F = dp/dt (∇2 − 1

c2

∂2

∂t2 )Aµ = − 4π
c jµ

Galilean Invariant Not Invariant

Poincare Not Invariant Invariant

How do you reconcile these results?

10. Show that the group of 2 × 2 matrices SU(2) is parameterized

by two complex numbers c1 = a1 + ib1 and c2 = a2 + ib2, so that

SU(2) =

[

c1 c2
−c∗2 c∗1

]

, subject to the condition a2
1 + b21 + a2

2 + b22 = 1.

Convince yourself (a) that topologically this group (i.e., its parameter-

izing manifold) is equivalent to a three-sphere S3 ⊂ R4; and (b) alge-

braically it is equivalent to SL(1;Q) [cf. (3.16)].

11. The group of 2 × 2 matrices SU(1, 1) is parameterized by two

complex numbers c1 = a1 + ib1 and c2 = a2 + ib2, so that SU(1, 1) =
[

c1 c2
c∗2 c∗1

]

, subject to the condition a2
1 + b21 − a2

2 − b22 = 1. Identify the

parameterizing manifold.
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12. The group SO(2) is one-dimensional. Show that every matrix in

SO(2) can be written in the form

[

m11 x

m21 m22

]

, where m2
11 + x2 = 1,

so that m11 = ±
√

1 − x2. The second row is orthogonal to the first, so

that m21m11 +m22x = 0. As a result, we find

SO(2) −→
[

±
√

1 − x2 x

−x ±
√

1 − x2

]

The ± signs are coherent. Each choice of sign (±) covers half the group.

13. The group SO(3) is three-dimensional. Show that every matrix

in SO(3) can be written in the form

SO(3) −→





m11 x y

m21 m22 z

m31 m32 m33





Use arguments similar to those used in Problem 12 to express the matrix

elements mij i ≥ j in terms of the three parameters (x, y, z).

14. An alternative parameterization of SO(3) is given by

SO(3) −→





Z2

x

y

−x −y Z1



 ×





±
√

1 − z2 z 0

−z ±
√

1 − z2 0

0 0 1





Express the 2 × 2 and 1 × 1 submatrices Z2 and Z1 in terms of the

coordinates (x, y). Determine the range of the parameters (x, y, z). How

many square roots (“sheets”) are necessary to completely cover SO(3)?

15. If M ∈ GL(n;Z), show that det(M) must be ±1.

16. Show that the orders of O(n;Z) ⊃ Sn ⊃ An are 2n × n!, n!, 1

2
n!.

17. Estimate the Fibonacci number F (n) from the eigenvalues λ± =
1

2

(

1 ±
√

5
)

of the generating matrix (3.33). What happens to this se-

quence if other initial conditions (than F (0) = 0, F (1) = 1) are intro-

duced?

18. Derive other Fibonacci-type series using other symmetric gener-

ating matrices in GL(2;Z) (for example,

[

2 −1

−1 1

]

) and other initial

conditions.
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19. The energy levels |nlm〉 of the nonrelativistic hydrogen atom

exhibit an n2-fold degeneracy under the Lie group SO(4). All bound

states with the same principle quantum number n have the same energy

E(nlm) = −E0/n
2 (E0 = 13.6 eV). If the Coulomb symmetry is broken

by placing one or more electrons in the Coulomb potential, the overall

symmetry reduces to that of the rotation group: there is a symmetry

reduction SO(4) ↓ SO(3). The representations of SO(4) that enter into

the description of the hydrogen atom bound states are indexed by the

principle quantum number n (n = 1, 2, 3 . . . ). The SO(4) representation

with quantum number n splits into angular momentum representations

that are indexed with quantum number l, l = 0, 1, 2 . . . , n − 1, with
∑l=n−1

l=0
(2l + 1) = n2. The SO(3) multiplet with quantum number

l is 2l + 1-fold degenerate. An empirical hamiltonian with SO(4) ↓
SO(3) broken symmetry that describes the filling order when electrons

are introduced into a Coulomb potential established by a central charge

+Ze can be chosen to have the form:

E = −E0Z
2 {1 + δ ∗ (n− l − 1)} /n2

This hamiltonian depends only on the quantum numbers of the represen-

tations of SO(4) and its subgroup SO(3). Show that this phenomenolog-

ical energy spectrum with δ = 0.28 provides the filling ordering that ac-

counts for Mendelyeev’s periodic table of the chemical elements: (n, l) →
1s; 2s, 2p; 3s, 3p; 4s, 3d, 4p; 5s, 4d, 5p; 6s, 4f, 5d, 6p; 7s, 5f, 6d, 7p; 8s, 6f, 7d, 8p; . . . .

20. Symmetries: Show the following equivalences:

UT (p, q) = UT (q, p) SO(p, q) = SO(q, p)

A(p, q) = A(q, p) U(p, q) = U(q, p)

Sp(p, q) = Sp(q, p)

21. G1 and G2 are two metrics on a real 2n dimensional linear vector

space that are defined by

G1 =

[

In 0

0 In

]

G2 =

[

0 In
−In 0

]

Show that the 2n× 2n matrices M that satisfy the bilinear constraints

M tGiM = Gi are:
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G1 G2 G1 and G2

O(2n;R) Sp(2n;R) OU(2n;R)

22. In an n-dimensional linear vector space two coordinate systems

x and y are related by a linear transformation: yj = xiM j
i . Show

that the derivatives are related by the same transformation (covariance

- contravariance)

∂

∂xi
=
∂yj

∂xi

∂

∂yj
= M j

i

∂

∂yj

As a result, a transformation that preserves a metric when acting on the

coordinates preserves the same metric when acting on the derivatives.

23. The Poisson brackets between two functions f(q, p) and g(q, p) on

a classical phase space of dimension 2n are defined by

{f, g} =
∑

k

∂f

∂qk

∂g

∂pk
− ∂g

∂qk

∂f

∂pk

a. Show that these relations can be written in simple matrix form as

{f, g} = (Df)tG(Dg) where G =

[

0 In
−In 0

]

and (Dg) =

[

∂g/∂q

∂g/∂p

]

b. Introduce a new coordinate system (Q,P ), related to the original

by a linear transformation of the form

[

∂g/∂Q

∂g/∂P

]

=

[

A B

C D

] [

∂g/∂q

∂g/∂p

]

Find the conditions on this 2n× 2n matrix that preserves the structure

of the Poisson brackets. Show AtC and BtD must be symmetric and

AtD − BtC = In.

c. Show that the same conditions hold for linear transformations and

the quantumn mechanical commutator bracket: [qj , qk] = [pj , pk] = 0

and [qj , pk] = i~δjk.

Note: The transformation from classical mechanics to quantum me-

chanics is made by identifying the classical Poisson bracket {, } with the

quantum commutator bracket [, ] according to

{u(q, p), v(q, p)} ↔ [u(q̂, p̂), v(q̂, p̂)]

i~
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The hatˆindicates an operator.

24. Transfer Matrices: Figure 3.2 shows a potential in one dimen-

sion. The wave function to the left of the interaction region has the form

ψL(x) = ALe
+ikx +BLe

−ikx =
[

e+ikx e−ikx
]

[

AL

BL

]

with a similar expression for the wavefunction on the right. The expo-

nential e+ikx describes a particle of mass m moving to the right (+) with

momentum ~k and energy E = (~k)2/2m. The complex number AL is

the probability amplitude for finding a particle moving to the right with

this momentum. The expected value of the momentum in the left-hand

region is 〈p̂〉 = (|AL|2 − |BL|2)~k, where the operator p̂ = ~

i
d
dx .

a. Show that conservation of momentum leads to the equation

|AL|2 − |BL|2 = |AR|2 − |BR|2

when the asymptotic value of the potential to the left of the

interaction region is the same as the value on the right.

b. Since the Schrödinger equation is second order the four amplitudes

AL, AR, BL, BR are not independent. Only two are indepen-

dent. Two linear relations exist among them. Show that they

can be expressed in terms of a matrix relation of the form

[

AL

BL

]

=

[

t11 t12
t21 t22

] [

AR

BR

]

The 2 × 2 matrix T is called a transfer matrix. The transfer

matrix is a function of energy E. Show that T (E) ∈ U(1, 1).

c. Show that T ∈ SU(1, 1) by appropriate choice of phase.

25. Crossing Symmetry: A transfer matrix T for a one dimen-

sional potential relates amplitudes for the wavefunction on the left of

the interaction region with the amplitudes on the right. A scattering

matrix (S-matrix) S relates the incoming amplitudes with the outgoing

amplitudes:

[

AL

BL

]

= T

[

AR

BR

] [

AR

BL

]

= S

[

AL

BR

]
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Fig. 3.2. The potentials to the left and right of the interaction region are
constant, with VL = VR. The wave functions to the left and right of this region
are represented in the form ψσ(x) = Aσe

+ikx +Bσe
−ikx, where σ = L,R.

a. Invoke conservation of momentum arguments to conclude S ∈ U(2).

b. Show that the matrix elements of S and T are related by

[

s11 s12
s21 s22

]

=











1

t11
− t12
t11

t21
t11

t11t22 − t12t21
t11











c. Show that the poles of S(E) are the zeroes of T (E), specifically of

t11(E). Poles along the real energy axis describe bound states.

Poles off the real axis of the form rj/[(E−Ej)+i(Γj/2)] describe

resonances at energy Ej with characteristic decay time Γj/~.

26. Two interaction regions V1 and V2 on the line are characterized

by transfer matrices T1 and T2, and also by S-matrices S1 and S2 (c.f.,

Fig. 3.3). The outputs of one region are inputs to the other, as follows:

[

i2
i3

]

=

[

0 1

1 0

] [

o1
o4

]

a. The transfer matrices for the two regions are defined by

[

i1
o2

]

= T1

[

o1
i2

] [

i3
o4

]

= T2

[

o3
i4

]

Show that the transfer matrix for the entire interaction region

is
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[

i1
o2

]

= TTot

[

o3
i4

]

TTot = T1T2

b. The S-matrices for the two regions relate inputs to outputs as follows









o1
o2
o3
o4

















s11 s12 0 0

s21 s22 0 0

0 0 s33 s34
0 0 s43 s44

















i1
i2
i3
i4









Show that the scattering matrix for the entire region is

STot =

[

0 s34
s21 0

]

+
1

1 − s12s43

[

s33s22 s33s112s44
s22s43s11 s22s44

]

c. Show that STot is unitary.

d. Interpret the matrix STot in terms of Feynman-like sum over all

paths. Do this by expanding the fraction 1/(1 − s12s43) as a

geomeetric sum and interpreting each term in this expansion as

a path through the two scattering potentials.

(   )

(   ) (   ) (   )

(   )(   )(   )
AL

BL

AM

BL

AL

BM

AR

BM

AM

BR

AR

BR

AM

BM

AA

BM

A

A   L

A

B  M

A

B  R

T1

S1

T2

S2

(  ) (  ) (  )

=

= =

=

VL VM VR
V1 (X) V2 (X)

(   )

Fig. 3.3. Two potentials on the line are characterized by their T and S ma-
trices.

27. If the potentials V1 and V2 are modified to V1
′ and V2

′ their

transfer matrices and their scattering matrices will also be modified

Ti(E) → T
′

i (E) and Si(E) → S
′

i(E), i = 1, 2. It is possible that for
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some energy E, S
′

Tot(E) = STot(E). Find the set of all modified scat-

tering matrices S
′

1(E) and S
′

2(E) with the property that the modified

pair maps into the original total S-matrix STot(E). In fancy terms, find

the fiber in U(4) ⊃ U(2) ⊗ U(2) ↓ U(2). Hint: If this seems daunting,

note that to satisfy T1(E)T2(E) = TTot(E) = T
′

1(E)T
′

2(E) we can take

T
′

1(E) = T1(E)R and T
′

2(E) = R−1T2(E) for any R ∈ U(1, 1). The fiber

in U(2, 2) ⊃ U(1, 1)⊗ U(1, 1) ↓ U(1, 1) over TTot(E) consists of the ma-

trices (T1(E)R,R−1T2(E)). Now map this into the fiber (S
′

1(E), S
′

2(E))

over STot(E).

28. A passive linear device, classical or quantum, can be described by

an S matrix. If the device has n external leads the scattering matrix

is an n× n matrix. Devices with n1, n2, · · · , nk leads can be connected

together by soldering some of the leads together. The leads that are

soldered together are the internal leads. The remainder of the leads are

external leads. We distinguish between internal and external leads by

subscripts i and e. The S matrix that describes the original set of k

devices is a direct sum of k S matrices of sizes nj × nj (j = 1, 2, ..., k).

Through appropriate permutation of the rows and columns of this direct

sum of S matrices the input-output relations can be expressed in the

form

[

ii
ie

]

=

[

A B

C D

] [

oi

oe

]

[oi] = Γ [ii]

The matrix Γ that relates internal outputs to internal inputs describes

the topology, or connectivity, of the network.

a. Show that the S matrix that describes the network, defined by [oe] =

SNetwork [ie], is given by (c.f., Problem 3.26c.)

SNetwork = D + CΓ(I −AΓ)−1B

b. Show that SNewtork is unitary: S†
Newtork

= SNewtork, SNewtork ⊂ U(d).

c. Expand SNewtork to show that

SNetwork = D+CΓB+CΓAΓB+CΓAΓAΓB+CΓAΓAΓAΓB+...

Interpret this expansion in terms of a Feynman sum over all

possible scattering paths through the network.

30. A mathematical description of the preceeding problem involves

a subgroup restriction U(
∑k

j=1
nj) ⊃ Πk

j=1 ⊗ U(nj) and a projection
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to the total network scattering matrix in U(d), where d is the number

of the network’s external leads. The connectivity is determined by the

permutation matrix Γ. Determine the fiber in Πk
j=1 ⊗ U(nj) over each

group operation in U(d).

31. All the matrices in this problem are square n×n, with: H hermi-

tian; U unitary; A antihermitian. Show the right hand columns follow

from the definition in the left hand column.

H2 =
H1 + In
H1 − In

[H1, H2] = 0 H1 =
H2 + In
H2 − In

U =
In + iH

In − iH
[H,U ] = 0 H = i

In − U

In + U

A =
In + iU

In − iU
[U,A] = 0 U = i

In −A

In +A

H =
In − iA

In + iA
[A,H ] = 0 A = i

H − In
H + In


