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Lie groups are beautiful, important, and useful because they have one foot
in each of the two great divisions of mathematics — algebra and geometry.
Their algebraic properties derive from the group axioms. Their geometric
properties derive from the identification of group operations with points
in a topological space. The rigidity of their structure comes from the
continuity requirements of the group composition and inversion maps. In
this chapter we present the axioms that define a Lie group.

2.1 Algebraic Properties

The algebraic properties of a Lie group originate in the axioms for a

group.

Definition: A set gi, gj, gk, . . . (called group elements or group oper-

ations) together with a combinatorial operation ◦ (called group multi-

plication) form a group G if the following axioms are satisfied:

(i) Closure: If gi ∈ G, gj ∈ G, then gi ◦ gj ∈ G.

(ii) Associativity: gi ∈ G, gj ∈ G, gk ∈ G, then

(gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk)

25



26 Lie Groups

(iii) Identity: There is an operator e (the identity operation) with

the property that for every group operation gi ∈ G

gi ◦ e = gi = e ◦ gi

(iv) Inverse: Every group operation gi has an inverse (called g−1
i )

with the property

gi ◦ g−1
i = e = g−1

i ◦ gi

Example: We consider the set of real 2 × 2 matrices SL(2;R):

A =

[

α β

γ δ

]

det(A) = αδ − βγ = +1 (2.1)

where α, β, γ, δ are real numbers. This set forms a group under matrix

multiplication. This is verified by checking that the group axioms are

satisfied.

(i) Closure: If A and B are real 2 × 2 matrices, and A ◦ B = C

(where ◦ now represents matrix multiplication), then C is a real

2 × 2 matrix. If det(A) = +1 and det(B) = +1, then det(C) =

det(A) det(B) = +1.

(ii) Associativity: (A ◦B) ◦ C and A ◦ (B ◦ C) are given explicitly

by

∑

k

(
∑

j

AijBjk)Ckl
?
=

∑

j

Aij(
∑

k

BjkCkl)

∑

k

∑

j

AijBjkCkl
ok
=

∑

j

∑

k

AijBjkCkl

(2.2)

(iii) Identity: The unit matrix is the identity

e −→ I2 =

[

1 0

0 1

]

(iv) Inverse: The unique matrix inverse of A is

[

A11 A12

A21 A22

]

→
[

A11 A12

A21 A22

]−1

=
1

A11A22 −A12A21

[

A22 −A12

−A21 A11

]
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2.2 Topological Properties

The geometric structure of a Lie group comes from the identification of

each element in the group with a point in some topological space: gi →
g(x). In other words, the index i depends on one or more continuous

real variables.

The topological space that parameterizes the elements in a Lie group

is a manifold. A manifold is a space that looks Euclidean on a small

scale everywhere. For example, every point on the surface of a unit

sphere S2 ⊂ R3: x2 + y2 + z2 = 1, has a neighborhood that looks, over

small distances, like a piece of the plane R2 (cf. Fig. 2.1). Locally, the

two spaces S2 and R2 are topologically equivalent but globally they are

different (Columbus).

p

S2
R2

•
q

Fig. 2.1. Every point p on a sphere S2 is surrounded by an open neighbor-
hood that is indistinguishable from an open neighborhood of any point in the
plane R2. Locally the two spaces are indistinguishable. Globally they are
distinguishable.

Definition: An n-dimensional differentiable manifold Mn consists of

(i) A topological space T . This includes a collection of open sets Uα

(a topology) that cover T : ∪αUα = T .

(ii) A collection of charts φα, with φα(Uα) = Vα ⊂ Rn. Each φα is a

homeomorphism of Uα to Vα.

(iii) Smoothness conditions: The homeomorphisms φα ◦φ−1

β : φβ(Uα∩
Uβ) → φα(Uα ∩ Uβ) of open sets in Rn to open sets in Rn are

1:1, invertible, and differentiable.

Remarks: The charts φα allow construction of coordinate systems

on the open sets Uα. It is often not possible to find a single coordinate

system on the entire manifold, as the example of the sphere in Fig.
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2.1 shows. Since the “transition functions” φα ◦ φ−1

β map Rn → Rn,

all the definitions of elementary multivariable calculus are applicable to

them. For example, the adjective “differentiable” can be replaced by

other adjectives (Ck, smooth, analytic, ...) in the definition above.

Example: Real 2 × 2 matrices are identified by four real variables.

The unimodular condition det(A) = +1 places one constraint on these

four real variables. Therefore every group element in SL(2;R) is deter-

mined by a point in some real three-dimensional space. One possible

parameterization is

(x1, x2, x3) −→





x1 x2

x3

1 + x2x3

x1



 x1 6= 0 (2.3)

Parameterization of the operations in a group by real numbers is a non-

trivial problem, as is clear when one asks: “What happens as x1 → 0?”

We will consider this question in Chapter 5.

The manifold that parameterizes the group SL(2;R) is the direct

product manifold R2 (plane) ×S1 (circle) (cf. Fig. 2.2). This is not

at all obvious, but will become clear when we discuss the infinitesimal

properties of Lie groups in Chapter 4.

R3

H2

S1

z

yx
θ+π θ

Fig. 2.2. Every matrix in SL(2; R) can be written as the product of a sym-
metric matrix and a rotation matrix, both unimodular. The symmetric ma-
trix is parameterized by a 2-dimensional manifold, the 2-sheeted hyperboloid
z2

− x2
− y2 = 1. The rotation matrix is parameterized by a point on a circle.

The parameterization manifold, H2
× S1, is three dimensional.

The dimension of the manifold that parameterizes a Lie group is the
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dimension of the Lie group. It is the number of continuous real param-

eters required to describe each operation in the group uniquely.

It is useful at this point to introduce the ideas of compactness and

noncompactness. Roughly speaking, a compact space is in some sense

finite and a noncompact space is not finite.

Definition: A topological space T is compact if every open cover (set

of open sets Uα) has a finite subcover: ∪finite
α T ⊂ Uα.

In spaces Rn with a Euclidean notion of distance (|x − x′|2 = |x1 −
x

′

1|2 + · · ·+ |xn−x
′

n|2), this definition is equivalent to an older definition

of compact spaces: A space is compact if every infinite sequence of points

has a subsequence that converges to a point in the space.

Example: In Fig. 2.1 the sphere S2 is compact and the plane R2 is

not compact. In Fig. 2.2, the circle is compact and the hyperboloid is

not compact.

Remark: In Rn every bounded closed subset is compact. ‘Closed’

means that the set contains all its limit points.

Remark: Compactness is an important topological property because

it means that the space is in some sense like a bounded, closed space.

For Lie groups it is important because all irreducible representations of

compact Lie groups are finite dimensional and can be constructed by

rather simple means (tensor product constructions).

2.3 Unification of Algebra and Topology

The rigidity of Lie group structures comes from combining the alge-

braic and topological properties through smoothness (differentiability)

requirements.

Definition: A Lie group consists of a manifoldMn that parameterizes

the group operations (g(x), x ∈ Mn) and a combinatorial operation

defined by g(x) ◦ g(y) = g(z), where the coordinate z ∈Mn depends on

the coordinates x ∈Mn and y ∈Mn through a function z = φ(x, y).

There are two topological axioms for a Lie group.

(i) Smoothness of the group composition map: The group

composition map z = φ(x, y), defined by g(x) ◦ g(y) = g(z), is

differentiable.

(ii) Smoothness of the group inversion map: The group inver-

sion map y = ψ(x), defined by g(x)−1 = g(y), is differentiable.

It is possible to combine these two axioms into a single axiom, but

there is no advantage to this.
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Example: For SL(2;R) with parameterization (2.3) the composition

function z = φ(x, y) is constructed easily by matrix multiplication g(x)◦
g(y) = g(φ(x, y))

g(x1, x2, x3) ◦ g(y1, y2, y3) = g(z1, z2, z3)





x1 x2

x3

1 + x2x3

x1



 ×





y1 y2

y3
1 + y2y3

y1



 =





z1 z2

z3
1 + z2z3

z1





where

g (φ(x1, x2, x3; y1, y2, y3)) = g(z1, z2, z3)







x1y1 + x2y3 x1y2 + x2

1 + y2y3
y1

x3y1 +
1 + x2x3

x1

y3 ∗






=





z1 z2

z3
1 + z2z3

z1





(2.4)

The result is easily read off matrix element by matrix element:

z1 = φ1(x1, x2, x3; y1, y2, y3) = x1y1 + x2y3

z2 = φ2(x1, x2, x3; y1, y2, y3) = x1y2 + x2

1 + y2y3
y1

(2.5)

z3 = φ3(x1, x2, x3; y1, y2, y3) = x3y1 +
1 + x2x3

x1

y3

The function φ is analytic in its two pairs of arguments provided x1

and y1 are bounded away from the x2-x3 plane x1 = 0 and the y2-

y3 plane y1 = 0. In the neighborhood of these values an alternative

parameterization of the group is needed.

It is also useful to determine the mapping that takes a group oper-

ation into its inverse. We can determine the coordinates (y1, y2, y3) of

[g(x1, x2, x3)]
−1 by setting (z1, z2, z3) = (1, 0, 0) and solving for (y1, y2, y3)

in terms of (x1, x2, x3). Or more simply we can compute the inverse of

the matrix (2.3)

[

x1 x2

x3 (1 + x2x3)/x1

]−1

=

[

(1 + x2x3)/x1 −x2

−x3 x1

]

(2.6)

The inverse mapping [g(x)]−1 = g(y) = g(ψ(x)) is

ψ1(x1, x2, x3) = y1 = (1 + x2x3)/x1

ψ2(x1, x2, x3) = y2 = −x2

ψ3(x1, x2, x3) = y3 = −x3

(2.7)
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This mapping is analytic except at x1 = 0, where an alternative param-

eterization is required. The parameterization shown in Fig. 2.2 handles

this problem quite well. Every matrix in SL(2;R) can be written as the

product of a symmetric matrix and a rotation matrix, both 2 × 2 and

unimodular. The symmetric matrix is parameterized by a 2-dimensional

manifold, the 2-sheeted hyperboloid z2 − x2 − y2 = 1. The rotation ma-

trix is parameterized by a point on a circle. Two points (x, y, |z|, θ) and

(−x,−y,−|z|, θ+π) map to the same matrix in SL(2;R). The manifold

that parameterizes SL(2;R) is three-dimensional. It is H2+×S1, where

H2+ is the upper sheet of the two-sheeted hyperboloid.

2.4 Unexpected Simplification

Almost every Lie group that we will encounter is either a matrix group

or else equivalent to a matrix group. This simplifies the description

of the algebraic, topological, and continuity properties of these groups.

Algebraically, the only group operations that we need to consider are

matrix multiplication and matrix inversion. Geometrically, the only

manifolds we encounter are those manifolds that can be constructed from

matrices by imposing algebraic constraints (algebraic manifolds) on the

matrix elements. The continuity properties on the matrix elements are

simple consequences of matrix multiplication and inversion.

2.5 Conclusion

Lie groups lie at the intersection of the two great divisions of mathemat-

ics: algebra and topology. The group elements are points in a manifold,

and as such are parameterized by continuous real variables. These points

can be combined by an operation that obeys the group axioms. The com-

binatorial operation φ(x, y) defined by g(x) ◦ g(y) = g(z) = g(φ(x, y))

is differentiable in both sets of variables. In addition, the mapping

y = ψ(x) of a group operation to its inverse [g(x)]−1 = g(y) = g (ψ(x))

is also differentiable.

Unexpectedly, almost all of the Lie groups encountered in applications

are matrix groups. This effects an enormous simplification in our study

of Lie groups. Almost all of what we would like to learn about Lie groups

can be determined by studying matrix groups.
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2.6 Problems

1. Construct the analytic mapping φ(x, y) for the parameterization of

SL(2;R) illustrated in Fig. 2.2.

2. Construct the inversion mapping for the parameterization of SL(2;R)

given in Fig. 2.2. Show that





x′

y′

θ′



 = −





cos(2θ) − sin(2θ) 0

sin(2θ) cos(2θ) 0

0 0 1









x

y

θ





3. Convince yourself that every matrix M in the group SL(n;R) can

be written as the product of an n×n real symmetric unimodular matrix

S and an orthogonal matrix O in SO(n): M = SO. Devise an algorithm

for constructing these matrices. Show S = (MM t)1/2 and O = S−1M .

How do you compute the square root of a matrix? Show that O is

compact while S and M are not compact.

4. Construct the most general linear transformation (x, y, z) → (x′, y′, z′)

that leaves invariant (unchanged) the quadratic form z2 − x2 − y2 = 1.

Show that this linear transformation can be expressed in the form





x′

y′

z′



 =





M1

a

b

a b M2









SO(2)
0

0

0 0 1









x

y

z





where the real symmetric matrices M1 and M2 satisfy

M2
1 = I2 +

[

a

b

]

[

a b
]

=

[

1 + a2 ab

ba 1 + b2

]

and

M2
2 = I1 +

[

a b
]

[

a

b

]

=
[

1 + a2 + b2
]

5. Construct the group of linear transformations [SO(1, 1)] that leaves

invariant the quantity (ct)2 − x2. Compare this with the group of linear

transformations [SO(2)] that leaves invariant the radius of the circle

x2 + y2. (This comparison involves mapping trigonometric functions to

hyperbolic functions by analytic continuation.)

6. Construct the group of linear transformations that leaves invariant

the quantity (ct)2−x2−y2−z2. This is the Lorentz group O(3, 1). Four
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disconnected manifolds parameterize this group. These contain the four

different group operations









±1 0 0 0

0 ±1 0 0

0 0 1 0

0 0 0 1









where the ± signs are incoherent.

7. The group of 2×2 complex matrices with determinant +1 is named

SL(2;C). Matrices in this group have the structure

[

α β

γ δ

]

, where

α, β, γ, δ are complex numbers and αδ − βγ = 1. Define the matrix X

by

X = H(x, y, z, ct) =

[

ct+ z x− iy

x+ iy ct− z

]

= ctI2 + σ · x

where x is the three-vector x = (x, y, z) and σ = (σ1, σ2, σ3) = (σx, σy, σz)

are the Pauli spin matrices.

a. Show that X is hermitian: X† ≡ (Xt)∗ = X .

b. Show that the most general 2 × 2 hermitian matrix can be written

in the form used to construct X .

c. If g ∈ SL(2;C), show that g†Xg = X ′ = H(x′, y′, z′, ct′).

d. How are the new space-time coordinates (x′, y′, z′, ct′) related to the

original coordinates (x, y, z, ct)? (They are linearly related by

coefficients that are bilinear in the matrix elements α, β, γ, δ of

g and α∗, β∗, γ∗, δ∗ of its adjoint matrix g†.)

e. Find the subgroup of SL(2;C) that leaves t′ = t. (It is SU(2) ⊂
SL(2;C)).

f. For any g ∈ SL(2;C) write g = kh, where h ∈ SU(2), h† = h−1, h

has the form h = EXP ( i
2
σ · θ) and k ∈ SL(2;C)/SU(2), k† =

k+1, k has the form k = EXP (1

2
σ · b). The three-vector b is

called a boost vector. The three-vectors θ and b are real. Con-

struct k†H(x, y, z, ct)k = H(x′, y′, z′, ct′). If this is too difficult,

choose b along the z-axis — b = (0, 0, b).

g. Show that the usual Lorentz transformation law results.

h. Applying k(b′) after applying k(b) results in: (a) k(b′ + b); (b) two

successive Lorentz transformations. Show that the velocity ad-

dition law for colinear boosts results.
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i. If b and b′ are not colinear, k(b′)k(b) = k(b′′)h(θ). Compute b′′, θ.

The angle θ is related to the Thomas precession [31].

8. The circumference of the unit circle is mapped into itself under

the transformation θ → θ′ = θ + k + f(θ), where k is a real number,

0 ≤ k < 2π, and f(θ) is periodic: f(θ+ 2π) = f(θ). The mapping must

be 1:1, so an additional condition is imposed on f(θ): df(θ)/dθ > −1

everywhere. Does this set of transformations form a group? What are

the properties of this group?

9. Rational fractional transformations (a, b, c, d) map points on the

real line (real projective line RP 1) to the real line as follows:

x→ x′ = (a, b, c, d)x =
ax+ b

cx+ d

The transformations (a, b, c, d) and (λa, λb, λc, λd) = λ(a, b, c, d) (λ 6= 0)

generate identical mappings.

a. Compose two successive rational fractional transformations

(A,B,C,D) = (a′, b′, c′, d′) ◦ (a, b, c, d)

and show that the composition is a rational fractional transfor-

mation. Compute the values of A,B,C,D.

b. Show that the transformations (λ, 0, 0, λ) map x to itself.

c. Construct the inverse transformation x′ → x, and show that it is

λ(d,−b,−c, a) provided λ 6= 0. Such transformations exist if

D = ad− bc 6= 0.

d. Show that the transformation degeneracy x′ = (a, b, c, d)x = λ(a, b, c, d)x

can be lifted by requiring that the four parameters a, b, c, d de-

scribing these transformations satisfy the constraint D = ad −
bc = 1.

e. It is useful to introduce homogeneous coordinates (y, z) and define

the real projective coordinate x as the ratio of these homoge-

neous coordinates: x = y/z. If the homogeneous coordinates

transform linearly under SL(2;R) then the real projective coor-

dinates x transform under rational fractional transformations:
[

y′

z′

]

=

[

a b

c d

] [

y

z

]

⇒ x′ =
y′

z′
=
a(y/z) + b

c(y/z) + d
=
ax+ b

cx+ d
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f. Show that a rational fractional transformation can be constructed

that maps three distinct points x1, x2, x3 on the real line to the

three standard positions (0, 1,∞), and that this mapping is

x→ x′ =
(x− x1)(x2 − x3)

(x− x3)(x2 − x1)

What matrix in SL(2;R) describes this mapping? (Careful of

the condition D = 1.)

g. Use this construction to show that there is a unique mapping of any

triple of distinct points (x1, x2, x3) to any other triple of distinct

points (x′1, x
′
2, x

′
3).

10. The real projective space RPn is the space of all straight lines

through the origin inRn+1. The group SL(n+1;R) maps x = (x1, x2, . . . , xn+1) ∈
Rn+1 to x′ ∈ Rn+1, with x′ 6= 0 ↔ x 6= 0 and x′ = 0 ↔ x = 0. A straight

line through the origin contains x 6= 0 and y 6= 0 if (and only) y = λx

for some real scale factor λ 6= 0. The scale factor can always be cho-

sen so that y is in the unit sphere in Rn+1: y ∈ Sn ⊂ Rn+1. In fact,

two values of λ can be chosen: λ = ±1/
√

∑n+1

i=1
x2

i . In R3 the straight

line containing (x, y, z) can be represented by homogeneous coordinates

(X,Y ) = (x/z, y/z) if z 6= 0. Straight lines through the origin of R3 are

mapped to straight lines in R3 by x → x′ = Mx, M ∈ SL(3;R). Show

that the homogeneous coordinates representing the two lines containing

x and x′ are related by the linear fractional transformation

[

X

Y

]

→
[

X ′

Y ′

]

=

([

m11 m12

m21 m22

] [

X

Y

]

+

[

m13

m23

])

/

(

[

m31 m32

]

[

X

Y

]

+m33

)

Generalize for linear fractional transformations RPn → RPn.

11. The hyperbolic 2-space SL(2;R)/SO(2) ≃
[

z + x y

y z − x

]

con-

sists of the algebraic submanifold in the Minkowski 2 + 1 dimensional

spacetime with metric (+1,−1,−1)

z2 − (x2 + y2) = 1

This submanifold inherits the metric
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ds2 = dz2 − (dx2 + dy2)

a. Show that

−ds2 = dx2 + dy2 − (d
√

1 + x2 + y2)2 =

1

1 + x2 + y2

(

dx dy
)

[

1 + y2 −xy
−yx 1 + x2

](

dx

dy

)

b. Introduce polar coordinates x = r cosφ, y = r sinφ, and show

−ds2 =
dr2

1 + r2
+ (rdφ)2

c. Show that the volume element on this surface is

dV =
r dr dφ√

1 + r2

d. Repeat this calculation for SO(3)/SO(2). This space is a sphere

S2 ⊂ R3: the algebraic manifold in R3 that satisfies z2 + (x2 +

y2) = 1 and inherits the metric ds2 = dz2 + (dx2 + dy2) from

this Euclidean space. Show that the metric and measure on S2

are obtained from the results above for H2 by the substitutions

1+r2 → 1−r2. Show that the disk 0 ≤ r ≤ 1, 0 ≤ φ ≤ 2π maps

onto the upper hemisphere of the sphere, with r = 0 mapping

to the north pole and r = 1 mapping to the equator. Show

that the geodesic length from the north pole to the equator

along the longitude φ = 0 is s =
∫ 1

0
dr/

√
1 − r2 = π/2 and the

volume of the hemisphere surface is V =
∫ r=1

r=0

∫ φ=2π

φ=0
dV (r, φ) =

∫ 1

0
rdr/

√
1 − r2

∫ 2π

0
dφ = 2π.


