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I. INTRODUCTION

Symmetry has sung its siren song to Physicists since
the beginning of time, or at least since before there were
Physicists. Today the ideas of symmetry are incorpo-
rated into a subject with the less imaginative and sug-
gestive name of Group Theory. This Chapter introduces
many of the ideas of group theory that are important in
the natural sciences.

Natural philosophers in the past have come up with
many imaginative arguments for estimating physical
quantities. They have often used out-of-the-box methods
that were proprietary to pull rabbits out of hats. When
these ideas were made available to a wider audience they
were often improved upon in unexpected and previously
unimaginable ways. A number of these methods are pre-
cursors of group theory. These are Dimensional Analysis,
Scaling Theory, and Dynamical Similarity. We review
these three methods in Sec. II.

In Sec. III we get down to the business at hand, intro-
ducing the definition of group and giving a small set of
important examples. These range from finite groups to
discrete groups to Lie groups. These also include trans-
formation groups, which played an important if under-
recognized rôle in the development of classical physics,
in particular the theories of Special and General Relativ-
ity. The relation between these theories and group theory
is indicated in Sec. IX.

Despite this important rôle in the development of
Physics, groups existed at the fringe of the Physics of
the early 20th century. It was not until the theory of the
linear matrix representations of groups was invented that
the theory of groups migrated from the outer fringes to
play a more central rôle in Physics. Important points in
the theory of representations are introduced in Sec. X.
Representations were used in an increasingly imagina-
tive number of ways in Physics throughout the 20th cen-
tury. Early on they were used to label states in Quantum
systems with a symmetry group: for example, the rota-
tion group SO(3). Once states were named, degeneracies
could be predicted and computations simplified. Such ap-
plications are indicated in Sec. XI. Later, they were used
when symmetry was not present, or just the remnant of a
broken symmetry was present. When used in this sense,
they are often called “dynamical groups.” This type of
use greatly extended the importance of Group Theory in
Physics. As a latest tour de force in the development of
Physics, groups play a central rôle in the formulation of
Gauge Theories. These theories describe the interactions
between fermions and the bosons and lie at the heart of

the Standard Model. We provide the simplest example
of a gauge theory, based on the simplest compact one
parameter Lie group U(1), in Sec. XIII.

For an encore, in Sec. XIV we show how the theory of
the special functions of mathematical physics (Legendre
and associated Legendre functions, Laguerre and associ-
ated Laguerre functions, Gegenbauer, Chebyshev, Her-
mite, Bessel functions, and others) are subsumed under
the theory of representations of some low-dimensional Lie
groups. The classical theory of special functions came to
fruition in the mid 19th century, long before Lie groups
and their representations were even invented.

II. PRECURSORS TO GROUP THEORY

The axioms used to define a group were formulated in
the second half of the nineteenth century. Long before
then the important ideas underlying these axioms were
used to derive classical results (for example, Pythago-
ras’ Theorem: see below) in alternative, simpler, and/or
more elegant ways, to obtain new results, or to consoli-
date different results under a single elegant argument. In
this Section we survey some of these imaginative lines of
thought. We begin with a simple argument due to Baren-
blatt that has been used to derive Pythagoras’ theorem.
We continue with a discussion of the central features of
dimensional analysis and illustrate how this tool can be
used to estimate the size of a hydrogen atom. We con-
tinue in the same vein, using scaling arguments to esti-
mate the sizes of other “atom-like” structures based on
the known size of the hydrogen atom. We conclude this
section with a brief description of dynamical similarity
and how the arguments intrinsic to this line of thinking
can be used to estimate one of Kepler’s laws and to place
four classical mechanics laws (Kepler, Newton, Galileo,
Hooke) in a common framework.

We emphasize that group theory is not used explicitly
in any of these arguments but its fingerprints are every-
where. These digressions should serve as appetizes to
indicate the power of the tool called Group Theory in
modern physical theories.

A. Classical Geometry

Barenblatt (Barenblatt, 2003) has given a beautiful
derivation of Pythagoras’ Theorem that is out-of-the-box
and suggests some of the ideas behind Dimensional Anal-
ysis. The area of the right triangle ∆(a, b, c) is 1

2ab (Fig.
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1). Dimensionally, the area is proportional to square of
any of the sides, multiplied by some factor. We make a
unique choice of side by choosing the hypotenuse, so that
∆(a, b, c) = c2 × f(θ), θ is one of the two acute angles,
and f(θ) 6= 0 unless θ = 0 or π/2. Equating the two
expressions

f(θ) =
1

2

(a
c

)(b
c

)
=

1

2

(
b

c

)(a
c

)
symmetry

= f(
π

2
− θ)

(1)
This shows (a) that the same function f(θ) applies for
all similar triangles and (b) f(θ) = f(π2 − θ). The latter
result is due to reflection ‘symmetry’ of the triangle about
the bisector of the right angle: the triangle changes but
its area does not. We need (a) alone to prove Pythagoras’
Theorem. The proof is in the figure caption.

FIG. 1: The area of the large right triangle is the sum of the
areas of the two similar smaller right triangles: ∆(a, b, c) =
∆(d, f, a)+∆(f, e, b), so that c2f(θ) = a2f(θ)+b2f(θ). Since
f(θ) 6= 0 for a nondegenerate right triangle, a2 + b2 = c2.

B. Dimensional Analysis

How big is a hydrogen atom?
The size of the electron ‘orbit’ around the proton in

the hydrogen atom ought to depend on the electron mass
me, or more precisely the electron-proton reduced mass
µ = meMP /(me + MP ). It should also depend on the
value of Planck’s constant h or reduced Planck’s constant
~ = h/2π. Since the interaction between the proton with
charge e and the electron with charge −e is electromag-
netic, of the form V (r) = −e2/r (Gaussian units), it
should depend on e2.

Mass is measured in gm. The dimensions of the charge
coupling e2 are determined by recognizing that e2/r is a
(potential) energy, with dimensions M1L2T−2. We will
use capital letters M (mass), L (length), and T (time)
to characterize the three independent dimensional ‘direc-
tions’. As a result, the charge coupling strength e2 has
dimensions ML3T−2 and is measured in gm(cm)3/sec2.
The quantum of action ~ has dimensions [~] = ML2T−1.
Here and below we use the standard convention that [∗]
is to be read “the dimensions of * are”.

Constant Dimensions Value Units

µ M 9.10442× 10−28 gm

~ ML2T−1 1.05443× 10−27 gm cm2 sec−1

e2 ML3T−2 2.30655× 10−19 gm cm3 sec−2

a0 L ? cm

Can we construct something (e.g., Bohr orbit aB) with
the dimensions of length from m, e2, and ~? To do this,
we introduce three unknown exponents a, b, and c and
write

aB ' ma (e2)b ~c = (M)a (ML3T−2)b (ML2T−1)c

= (M)a+b+c L0a+3b+2c T 0a−2b−c

(2)
and set this result equal to the dimensions of whatever
we would like to compute, in this case the Bohr orbit
aB (characteristic atomic length), with [aB ] = L. This
results in a matrix equation 1 1 1

0 3 2

0 −2 −1


 ab
c

 =

 0

1

0

 (3)

We can invert this matrix to find 1 1 1

0 3 2

0 −2 −1


−1

=

 1 −1 −1

0 −1 −2

0 2 3

 (4)

This allows us to determine the values of the exponents
which provide the appropriate combinations of impor-
tant physical parameters to construct the characteristic
atomic length: ab

c

 =

 1 −1 −1

0 −1 −2

0 2 3


 0

1

0

 =

 −1

−1

2

 (5)

This result tells us that

a0 ∼ m−1(e2)−1(~)2 = ~2/me2 ∼ 10−8 cm (6)

To construct a characteristic atomic time, we can re-
place the vector col[0, 1, 0] in Eq. (5) by the vector
col[0, 0, 1], giving us the result τ0 ∼ ~3/m(e2)2. Fi-
nally, to get a characteristic energy, we can form the
combination E ∼ML2T−2 = m(~2/me2)2(~3/me4)−2 =
me4/~2. Another, and more systematic, way to get this
result is to substitute the vector col[1, 2,−2]t for [0, 1, 0]t

in Eq. (5).
Note that our estimate would be somewhat different if

we had used h instead of ~ = h/2π in these arguments.
We point out that this method is very useful for estimat-
ing the order of magnitude of physical parameters and in
practised hands usually gets the prefactor within a factor
of 10. The most critical feature of dimensional analysis
is to identify the parameters that are most important in
governing the science of the problem, and then to con-
struct a result depending on only those parameters.
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C. Scaling

Positronium is a bound state of an electron e with a
positron ē, its antiparticle with mass me and charge +e.
How big is positronium?

To address this question we could work very hard and
solve the Schrödinger equation for positronium. This is
identical to the Schrödinger equation for the hydrogen
atom, except for replacing the hydrogen atom reduced
mass meMp/(me + Mp) ' me by the positronium re-
duced mass meme/(me + me) = 1

2me. Or we could be
lazy and observe that the hydrogen atom radius is in-
versely proportional to the reduced electron-proton mass,
so the positronium radius should be inversely propor-
tional to the reduced electron-positron mass me/2. Since
the reduced electron-proton mass is effectively the elec-
tron mass, the positronium atom is approximately twice
as large as the hydrogen atom.

In a semiconductor it is possible to excite an electron
(charge −e) from an almost filled (valence) band into an
almost empty (conduction) band. This leaves a ‘hole’ of
charge +e behind in the valence band. The positively
charged hole in the valence band interacts with the ex-
cited electron in the conduction band through a reduced
Coulomb interaction: V (r) = −e2/εr. The strength of
the interaction is reduced by screening effects which are
swept into a phenomenological dielectric constant ε. In
addition, the effective masses m∗e of the excited electron
and the left-behind hole m∗h are modified from the free-
space electron mass values by many-particle effects.

How big is an exciton in Gallium Arsenide (GaAs)?
For this semiconductor the phenomenological parameters
are ε = 12.5, m∗e = 0.07me, m

∗
h = 0.4me.

We extend the scaling argument above by comput-
ing the reduced mass of the electron hole pair: µe−h =
(0.07me)(0.4me)/(0.07 + 0.4)me = 0.06me and replacing
e2 in the expression Eq. (4) for the Bohr radius a0 by
e2/ε. The effect is to multiply a0 by 12.5/0.06 = 208.
The ground state radius of the exciton formed in GaAs
is about 10−6 cm. The ground state binding energy is
lower than the hydrogen atom binding energy of 13.6 eV
by a factor of 0.06/12.52 = 3.8× 10−4 so it is 5.2 meV .

Scaling arguments such as these are closely related to
renormalization group arguments as presented in Chap-
ter XXX.

D. Dynamical Similarity

Jupiter is about five times further (5.2AU) from our
Sun than the Earth. How many earth years does it take
for Jupiter to orbit the Sun?

Landau and Lifshitz provide an elegant solution to
this simple question using similarity (scaling) arguments
(Landau and Lifshitz, 1960). The equation of motion for
the Earth around the Sun is

mE
d2xE

dt2E
= −GmEMS

x̂E

|xE|2
(7)

where xE is a vector from the sun to the earth and x̂E

the unit vector in this direction. If Jupiter is in a geo-
metrically similar orbit, then xJ = αxE, with α = 5.2.
Similarly, time will evolve along the Jupiter trajectory
in a scaled version of its evolution along the Earth’s tra-
jectory: tJ = βtE . Substituting these scaled expressions
into the equation of motion for Jupiter, and cancelling
out mJ from both sides, we find

α

β2

d2xE

dt2E
= − 1

α2
GMS

x̂E

|xE|2
(8)

This scaled equation for Jupiter’s orbit can only be
equated to the equation for the Earth’s trajectory (the or-
bits are similar) provided α3/β2 = 1. That is, β = α3/2,
so that the time-scaling factor is 5.23/2 = 12.5.

We have derived Kepler’s Third Law without even solv-
ing the equations of motion! Landau and Lifshitz point
out that you can do even better than that. You don’t
even need to know the equations of motion to construct
scaling relations when motion is described by a poten-
tial V (x) which is homogeneous of degree k. This means
that V (αx) = αkV (x). When the equations of motion
are derivable from a Variational Principle δI = 0, where

I =

∫ (
m

(
dx

dt

)2

− V (x)

)
dt (9)

then the scaling relations x→ x′ = αx, t→ t′ = βt lead
to a modified action

I ′ =
α2

β

∫ (
m

(
dx

dt

)2

− αk−2β2V (x)

)
dt (10)

The Action I ′ is proportional to the original Action I,
and therefore leads to the same equations of motion,
only when αk−2β2 = 1. That is, the time elapsed, T ,
is proportional to the distance traveled, D, according to
T ' D(1−k/2). Four cases are of interest.

k=−1 (Coulomb/Gravitational Potential) The period
of a planetary orbit scales like the 3/2 power of the dis-
tance from the Sun (Kepler’s Third Law).

k= 0 (No forces) The distance traveled is proportional
to the time elapsed (essentially Newton’s First Law). To
recover Newton’s first law completely it is only necessary
to carry out the variation in Eq. (10), which leads to
d
dt

(
dx
dt

)
= 0.

k=+1 (Free fall in a homogeneous gravitational field)
The potential V (z) = mgz describes free fall in a ho-
mogeneous graviational field. Galileo is reputed to have
dropped rocks off the Leaning Tower of Pisa to determine
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TABLE I: Four important results in the historical develop-
ment of science are consequences of scaling arguments.

k Scaling Law

−1 T 2 ' D3 Kepler #3

0 D ' T Newton #1

+1 ∆z ' ∆t2 Galileo : Rolling Stones

+2 T ' D0 Hooke

that the distance fallen was proportional to the square of
the time elapsed. The story is apocryphal: in fact, he
rolled stones down an inclined plane to arrive at the re-
sult ∆z ' ∆t2.

k=+2 (Harmonic oscillator potential) The period is
independent of displacement: β = 1 independent of α.
Hooke’s law, F = −kx, V (x) = 1

2kx
2 leads to oscillatory

motion whose frequency is independent of the amplitude
of motion. This was particularly useful for constructing
robust clocks.

These four historical results in the development of early
science are summarized in Table I and Fig. 2.

FIG. 2: Four substantial advances in the development of early
Physics are summarized. Each is a consequence of using a ho-
mogeneous potential with a different degree k in a variational
description of the dynamics. Scaling relates the size scale of
the trajectory α to the time scale β = αp, p = 1− 1

2
k of the

motion.

III. GROUPS: DEFINITIONS

In this Section we finally get to the point of defin-
ing what a group is by stating the group axioms
(see: Wigner, 1959; Hamermesh, 1962; Tinkham, 1964;
Gilmore, 2008; Sternberg, 1994). These are illustrated
in the following sections with a number of examples: fi-
nite groups, including the two-element group, the group
of transformations that leaves the equilateral triangle in-

variant, the permutation group, point groups, and dis-
crete groups with a countable infinite number of group
operations, such as space groups. Then we introduce
groups of transformations in space as matrix groups. Lie
groups are introduced and examples of matrix Lie groups
are presented. Lie groups are linearized to form their Lie
algebras, and groups are recovered from their algebras by
reversing the linearization procedure using the exponen-
tial mapping. Many of the important properties of Lie
algebras are introduced, including isomorphisms among
different representations of a Lie algebra. A powerful dis-
entangling theorem is presented and illustrated in a very
simple case that plays a prominent rôle in the field of
Quantum Optics. We will use this result in the Section
on Special Functions.

A. Group Axioms

A group G consists of:

• a set of group elements: g0, g1, g2, g3, · · · ∈ G

• a group operation, ◦, called group multiplication

that satisfy the following four axioms:

Closure: gi ∈ G, gj ∈ G⇒ gi ◦ gj ∈ G

Associativity: (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk)

Identity: g0 ◦ gi = gi = gi ◦ g0

Unique Inverse: gk ◦ gl = g0 = gl ◦ gk

Group multiplication ◦ has two inputs and one output.
The two inputs must be members of the set. The first
axiom (Closure) requires that the output must also be
a member of the set.

The composition rule ◦ does not allow us to multiply
three input arguments. Rather, two can be combined to
one, and that output can be combined with the third.
This can be done in two different ways that preserves
the order (i, j, k). The second axiom (Associativity)
requires that these two different ways give the same final
output.

The third axiom (Identity) requires that a special
group element exists. This, combined with any other
group element, gives back exactly that group element.

The fourth axiom (Unique Inverse) guarantees that
for each group element gl, there is another uniquely de-
fined group element gk, with the property that the prod-
uct of the two is the unique identity element gk ◦ gl = g0.
It is a simple matter to prove that gl ◦ gk = g0.

Remark 1 — Indexes: The notation (subscripts
i, j, k, · · · ) may suggest that the indices are inte-
gers. This is not generally true: for continuous
groups the indices are points in some subspace of
a Euclidean space or more complicated manifold.
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Remark 2 — Commutativity: In general the output
of the group multiplication depends on the order
of the inputs: gi ◦ gj 6= gj ◦ gi. If the result is
independent of the order the group is said to be
commutative.

It is not entirely obvious that the Unique Inverse ax-
iom is needed. It is included among the axioms because
many of our uses involve relating measurements made by
two observers. For example, if Allyson on the Earth can
predict something about the length of a year on Jupiter,
then Bob on Jupiter should just as well be able to pre-
dict the length of Allyson’s year on Earth. Basically,
this axiom is an implementation of Galileo’s Principle of
Relativity.

B. Isomorphisms and Homomorphisms

It is often possible to compare two different groups.
When it is possible it is very useful. Suppose we have two
groups G with group operations g0, g1, g2, · · · and group
composition law gi◦gj = gk and H with group operations
h0, h1, h2, · · · and group composition law hi � hj = kk.
A mapping f from G to H is a homomorphism if it
preserves the group operation:

f(gi ◦ gj) = f(gi) � f(gj) (11)

In this expression f(g∗) ∈ H, so the two group elements
f(gi) and f(gj) can only be combined using the combi-
natorial operation �. If Eq. (11) is true for all pairs of
group elements in G the mapping f is a homomorphism.

If G has four elements I, C4, C
2
4 , C

3
4 and H has two

Id, C2, the mapping f(I) = f(C2
4 ) = Id, f(C4) =

f(C3
4 ) = C2, the mapping f is a homomorphism. If

the mapping f is a homomorphism and is also 1:1, it
is called an isomorphism. Under these conditions the
inverse mapping also is an ismorphism:

f−1(hp � hq) = f−1(hp) ◦ f−1(hq) (12)

As an example, an isomorphism exists between the four
group elements I, C4, C

2
4 , C

3
4 and the 2× 2 matrices with

f(C4) =

[
0 1

−1 0

]
.

IV. EXAMPLES OF DISCRETE GROUPS

A. Finite Groups

1. The Two-Element Group Z2

The simplest nontrivial group has one additional ele-
ment beyond the identity e: G = {e, g} with g ◦ g = e.

This group can act in our three-dimensional space R3 in
several different ways:

Reflection: (x, y, z)
g=σZ→ (+x,+y,−z)

Rotation: (x, y, z)
g=RZ(π)→ (−x,−y,+z)

Inversion: (x, y, z)
g=P→ (−x,−y,−z)

These three different actions of the order-two group on
R3 describe: reflections in the x-y plane, σZ ; rotations
around the Z axis through π radians, RZ(π); and inver-
sion in the origin, the parity operation, P. They can be
distinguished by their matrix representations, which are

σZ RZ(π) P +1 0 0

0 +1 0

0 0 −1


 −1 0 0

0 −1 0

0 0 +1


 −1 0 0

0 −1 0

0 0 −1


(13)

2. Group of Equilateral Triangle C3v

FIG. 3: The group of the equilateral triangle consists of: (a)
the identify group operation e; (b) two rotations C±3 by ± 2π

3
about the centroid of the triangle; and (c) three reflections σi
in straight lines between the centroid and each of the vertices
i.

The six operations that map the equilateral triangle to
itself constitute the group C3v (c.f. Fig. 3). There are
three distinct types of operations:

Identity: e This operation does nothing: it maps each
vertex into itself.

Rotations: Two rotations C±3 about the center of the
triangle through ±2π/3 radians.
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Reflections: There are three reflections σi, each in a
straight line through the center of the triangle and
the vertex i (i = 1, 2, 3, c.f. Fig. 3).

These operations can be defined by their action on the
vertices of the triangle. For example

C+
3

(
1 2 3

2 3 1

)  0 1 0

0 0 1

1 0 0

 (14)

The first description (( )) says that the rotation C+
3 maps

vertex 1 to vertex 2, 2 → 3 and 3 → 1. The second
description ([ ]) can be understood as follows:

 2

3

1

 =

 0 1 0

0 0 1

1 0 0


 1

2

3

 (15)

The group multiplication law can be represented through
a 6×6 matrix (Cayley multiplication table) that describes
the output of gi ◦ gj , with gi listed by column and gj by
row:

gj e C+
3 C−3 σ1 σ2 σ3

gi
e e C+

3 C−3 σ1 σ2 σ3

C+
3 C+

3 C−3 e σ2 σ3 σ1

C−3 C−3 e C+
3 σ3 σ1 σ2

σ1 σ1 σ3 σ2 e C−3 C+
3

σ2 σ2 σ1 σ3 C+
3 e C−3

σ3 σ3 σ2 σ1 C−3 C+
3 e

(16)

This table makes clear that the group is not commuta-
tive: C−3 = σ1 ◦ σ2 6= σ2 ◦ σ1 = C+

3 .
The partition of the six elements in this group into

three subsets of geometrically equivalent transformations
is typical of any group. These subsets are called classes.
Classes are defined by the condition

Class : {h1, h2, · · · } g ◦hi ◦g−1 = hj all g ∈ G (17)

All elements in the same class have essentially the same
properties. They are equivalent under a group trans-
formation. The three classes for the finite group C3v are:
{e} ,

{
C+

3 , C
−
3

}
, {σ1, σ2, σ3}.

It is clear from the group multiplication table (Eq.
(16)) that C3v has a number of (proper) subgroups:
three subgroups of order two {e, σ1} , {e, σ2} , {e, σ3} and
one of order three

{
e, C+

3 , C
−
3

}
. For technical reasons

the single eelment {e} and the entire group C3v are also
considered to be subgroups of C3v (they are not proper
subgroups). Whenever a group G has a subgroup H, it
is always possible to write each group operation in G as

the product of an operation in H with “something else”:
gi = hjCk. For example, if H is the subgroup of order
three we can choose the two elements C1, C2 (2 = 6/3)
as {e, σ1}. Then from Eq. (16)

{
e, C+

3 , C
−
3

}
◦ e =

{
e, C+

3 , C
−
3

}{
e, C+

3 , C
−
3

}
◦ σ1 = {σ1 σ2, σ3}

(18)

Since in some sense G is a product of group operations in
the subgroup H with group elements in C (G = H ◦ C),
we can formally write C as the “quotient” of G by the
subgroup H: C = H\G. If we composed in the reversed
order: G = CH, then we could write C = G/H.

The set C is called a coset. It is not unique, but for
finite groups its order (number of elements in the set) is
unique: the quotient of the order G by the order of H. A
coset may or may not be a group, depending whether the
subgroup H is invariant in G (gHg−1 ⊂ H for all g ∈ G)
or not.

Remark’: When G and H are Lie groups of dimen-
sions dG and dH , G/H is a manifold of dimension dG/dH ,
and under a broad set of conditions this manifold has a
geometric structure imparted by a Riemannian metric
derived from the geometric properties of the two groups
G and H (Gilmore, 2008).

3. Cyclic Groups Cn

The cyclic group consists of all rotations of the circle
into itself through the angle 2π/n radians, and integer
multiples of this angle. There are n such operations. The
rotation through 2πk/n radians is obtained by applying
the “smallest” rotation (also called Cn or C1

n) k times.
This smallest rotation is called a generator of the group.
The group is commutative. There are therefore as many
classes as group elements. The group operations can be
put in 1 : 1 correspondence with the complex numbers
and also with real 2× 2 matrices:

[
ei2πk/n

]
1×1← Ckn

2×2→

[
cos 2πk

n sin 2πk
n

− sin 2πk
n cos 2πk

n

]
(19)

with k = 0, 1, 2 · · · , n−1 or k = 1, 2, · · ·n. Every element
in the group can be obtained by multiplying C1

n by itself.
In the same way the 1 × 1 complex matrix with k = 1
is the generator for the 1 × 1 matrix representation of
this group and the 2 × 2 real matrix with k = 1 is the
generator for the 2×2 matrix representation of the group.

4. Permutation Groups Sn

Permutation groups act to interchange things. For ex-
ample, if we have n numbers 1, 2, 3, · · ·n, each permuta-
tion group operation will act to scramble the order of the
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integers differently. Two useful ways to describe elements
in the permutation group are shown in Eq. (14) for the
permutation group on three vertices of an equilateral tri-
angle. In the first case, the extension of this notation for
individual group elements consists of a matrix with two
rows, the top showing the ordering before the operation is
applied, the bottom showing the ordering after the group
operation has been applied. In the second case shown in
Eq. (14) the extension consists of n × n matrices with
exactly one +1 in each row and each column. The order
of Sn is n!. Permutation groups are noncommutative for
n > 2. S3 = C3v.

The permutation group plays a fundamental role in
both mathematics and physics. In mathematics it is used
to label the irreducible tensor representations of all Lie
groups of interest. In physics it is required to distinguish
among different states that many identical particles (ei-
ther bosons or fermions) can assume.

5. Generators and Relations

If G is a discrete group, with either a finite or a count-
able number of group elements, it is useful to introduce a
small set of generators {σ1, σ2, · · · , σk} to describe the
group. Every element in the group can be represented
as a product of these generators and/or their inverses in
some order.

For example, if there is only one generator {σ} and
every group element can be written in the form gn = σn,
n = · · · ,−2,−1, 0, 1, 2, · · · then G has a countable num-
ber of group elements. It is called a free group with one
generator. If there are two generators {σ1, σ2}, the two
generators commute σ1σ2 = σ2σ1, and every group op-
eration can be expressed in the form gm,n = σm1 σ

n
2 (m,n

integers), the group is the free group with two commut-
ing generators. Free groups with k > 2 generators are
defined similarly. Free groups with 1, 2, 3 · · · generators
are isomorphic to groups that act on periodic lattices in
1, 2, 3 · · · dimensions.

Often the generators satisfy relations. For exam-
ple, a single generator σ may satisfy the relation σp =
I. Then there are exactly p distinct group operations
I = σ0, σ1, σ2, · · · , σp−1. The group with one genera-
tor and one relation is the cyclic group Cp. Generators
{σ1, σ2, · · · , σk} and relations fl({σ1, σ2, · · · , σk}) = I,
l = 1, 2, · · · have been used to define many different
groups. In fact, every discrete group is either defined
by a set of generators and relations, or else a subgroup
of such a group. The symmetric group Sn is defined by
n − 1 generators σi, i = 1, 2, · · · , n− 1 and the relations
σ2
i = I, σiσj = σjσi if j 6= i ± 1, and σiσi+1σi =
σi+1σiσi+1. The tetrahedral (T ), octahedral (O), and
icosahedral (I) point groups are defined by two gener-
ators and three relations: σ2

1 = I, σ3
2 = I, (σ1σ2)p = I

with p = 3, 4, 5, respectively. The quaternion group Q8

can be defined with two generators and two relations
σ1σ2σ1 = σ2, σ2σ1σ2 = σ1 or in terms of three gener-

ators and four relations σ4
1 = σ4

2 = σ4
3 = I, σ1σ2σ3 = I.

In the latter case the three generators can be chosen as
2 × 2 matrices that are the three Pauli spin matrices,
multiplied by i =

√
−1.

The study of discrete groups defined by generators and
relations has a long and very rich history.

B. Infinite Discrete Groups

1. Translation Groups: 1 Dimension

Imagine a series of points at locations na along the
straight line, where a is a physical parameter with di-
mensions of length ([a] = L) and n is an integer. The
group that leaves this set invariant consists of rigid dis-
placements through integer multiples of the fundamental
length. The operation Tka displaces the point at na to
position (n+ k)a. This group has a single generator Ta,
and Tka = Ta ◦ Ta ◦ · · · ◦ Ta = T ka . It is convenient to
represent these group operations by 2× 2 matrices

Tka →

[
1 ka

0 1

]
(20)

In this representation group composition is equivalent to
matrix multiplication. The group is commutative. The
generator for the group and this matrix representation
is obtained by setting k = 1. There is also an entire
set of 1 × 1 complex matrix representations indexed by
a real parameter p with generator Ta →

[
eipa

]
. The rep-

resentations with p′ = p+ 2π/a are equivalent, so all the
inequivalent complex representations can be parameter-
ized by real values of p in the range 0 ≤ p < 2π/a or,
more symmetrically −π/a ≤ p ≤ π/a, with the endpoints
identified. The real parameter p is in the dual space to
the lattice, called the first Brillouin zone.

2. Translation Groups: 2 Dimensions

Now imagine a series of lattice points in a plane at
positions x = i1f1 + i2f2. Here i1, i2 are integers and
the vectors f1, f2 are not colinear but otherwise arbitrary.
Then the set of rigid displacements (j1, j2) move lattice
points x to new locations as per

Tj1f1+j2f2 (i1f1 + i2f2) = (i1 + j1)f1 + (i2 + j2)f2 (21)

Generalizing Eq. (20), there is a simple 1 : 1 (or faithful)
matrix representation for this group of rigid translations:

Tj1f1+j2f2 →

 1 0 j1|f1|
0 1 j2|f2|
0 0 1

 (22)
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Extension to groups of rigid displacements of lattices in
higher dimensions is straightforward.

3. Spacegroups

When |f1| = |f2| and the two vectors are orthogonal,
rotations through kπ/2 (k = 1, 2, 3) radians about any
lattice point map the lattice into itself. So also do re-
flections in lines perpendicular to |f1| and |f2| as well as
lines perpendicular to ±|f1|±|f2|. This set of group oper-
ations contains displacements, rotations, and reflections.
It is an example of a two-dimensional space group. There
are many other space groups in two dimensions and very
many more in three dimensions. These groups were first
used to enumerate the types of regular lattices that Na-
ture allows in two and three dimensions (Tinkham, 1964).
After the development of Quantum Mechanics they were
used in another way (depending on the theory of repre-
sentations): to give names to wavefunctions that describe
electrons (and also phonons) in these crystal lattices.

V. EXAMPLES OF MATRIX GROUPS

A. Translation Groups

The group of rigid translations of points in R3 through
distances a1 in the x-direction, a2 in the y-direction, and
a3 in the z-direction can be described by simple block
4× 4 (4 = 3 + 1) matrices:

Ta1,a2,a3 →


1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1

 (23)

If the a belong to a lattice the group is discrete. If they
are continuous the group is continuous and has dimension
three.

B. Heisenberg Group H3

The Heisenberg group H3 plays a fundamental role
in quantum mechanics. As it appears in the quantum
theory it is described by “infinite-dimensional” matrices.
However, the group itself is three dimensional. In fact, it
has a simple faithful description in terms of 3×3 matrices
depending on three parameters:

h(a, b, c) =

 1 a c

0 1 b

0 0 1

 (24)

The matrix representation is faithful because any matrix
of the form (24) uniquely defines the abstract group op-
eration h(a, b, c). The group is not commutative. The
group multiplication law can be easily seen via matrix
multiplication:

h1h2 = h3 = h(a3, b3, c3) =

 1 a1 + a2 c2 + a1b2
0 1 b1 + b2
0 0 1


(25)

The group composition law given in Eq. (25) defines the
Heisenberg group. The result c3 = a1b2 + c2 leads to
remarkable noncommutativity properties among canoni-
cally conjugate variables in the quantum theory: [p, x] =
~/i.

C. Rotation Group SO(3)

The set of rigid rotations of R3 forms a group. It is
conveniently represented by a faithful 3× 3 matrix. The
3 × 3 matrix describing rotations about an axis of unit
length n̂ through an angle θ, 0 ≤ θ ≤ π is

(n̂, θ)→ I3 cos θ+n̂ · L sin θ+

 n̂1

n̂2

n̂3

×[ n̂1 n̂2 n̂3

]
(1−cos θ)

(26)
Here L is a set of three 3×3 angular momentum matrices

Lx =

 0 0 0

0 0 1

0 −1 0

 Ly =

 0 0 −1

0 0 0

1 0 0

 Lz =

 0 1 0

−1 0 0

0 0 0


(27)

The matrix multiplying (1− cos θ) in Eq. (26) is a 3× 3
matrix: it is the product of a 3×1 with a 1×3 matrix. We
will show later how this marvelous expression has been
derived.

There is a 1:1 correspondence between points in the in-
terior of a ball of radius π and rotations through an angle
in the range 0 ≤ θ < π. Two points on the surface (n̂, π)
and (−n̂, π) describe the same rotation. The parameter
space describing this group is not a simply connected sub-
manifold of R3: it is a doubly connected manifold. The
relation between continuous groups and their underlying
parameter space involves some fascinating topology.

D. Lorentz Group SO(3, 1)

The Lorentz group is the group of linear transforma-
tions that leave invariant the square of the distance be-
tween two nearby points in spacetime: (cdt, dx, dy, dz)
and (cdt′, dx′, dy′, dz′). The distance can be written in
matrix form:
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(cdτ)2 = (cdt)2 − (dx2 + dy2 + dz2) =

[
cdt dx dy dz

]
+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



cdt

dx

dy

dz

 (28)

If the infinitesimals in the primed coordinate system are
related to those in the unprimed coordinate system by
a linear transformation — dx

′µ = Mµ
ν dx

ν — then the
matrices M must satisfy the constraint (t means matrix
transpose and the summation convention has been used:
doubled indices are summed over.)

M tI1,3M = I1,3 (29)

where I1,3 is the diagonal matrix diag(+1,−1,−1,−1).
The matrices M belong to the orthogonal group O(1, 3).
This is a six-parameter group. Clearly the rotations
(three dimensions worth) form a subgroup, represented

by matrices of the form

[
±1 0

0 ±R(n̂, θ)

]
, where R(n̂, θ)

is given in Eq.(26). This group has four disconnected
components, each connected to a 4 × 4 matrix of the

form

[
1 0

0 I3

]
,

[
1 0

0 −I3

]
,

[
−1 0

0 I3

]
,

[
−1 0

0 −I3

]
. We

choose the component connected to the identity I4. This
is the special Lorentz group SO(1, 3). A general matrix
in this group can be written in the form

SO(1, 3) = B(β)R(θ) (30)

where the matrices B(β) describe boost transformations
and R(θ) = R(n̂, θ). A boost transformation maps a co-
ordinate system at rest to a coordinate moving with ve-
locity v = cβ and with axes parallel to those in the sta-
tionary coordinate system. We will describe these trans-
formations in more detail below.

Since every group operation in SO(1, 3) can be ex-
pressed as the product of a rotation operation with a
boost, we can formally write boost transformations as
elements in a coset: B(β) = SO(1, 3)/SO(3).

A general boost transformation can be written in the
form

B(β) =

[
γ γβ

γβ I3 + (γ − 1)
βiβj
β·β

]
(31)

For example, a boost in the x-direction with v/c =
(β, 0, 0) has the following effect on coordinates (β = |β|):


ct

x

y

z


′

=


γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1



ct

x

y

z

 =


γ(ct+ βx)

γ(x+ βct)

y

z


(32)

Here γ2 − (βγ)2 = 1 so γ = 1/
√

1− β2. In the non-
relativistic limit x′ = γ(x + βct) → x + vt, so β has an
interpretation of β = v/c.

The product of two boosts in the same direction is
obtained by matrix multiplication. This can be carried
out on a 2× 2 submatrix of that given in Eq. (32):

B(β1)B(β2) =

[
γ1 β1γ1

β1γ1 γ1

][
γ2 β2γ2

β2γ2 γ2

]
=

[
γtot βtotγtot

βtotγtot γtot

] (33)

Simple matrix multiplication shows βtot = β1+β2

1+β1β2
, which

is the relativistic velocity addition formula for parallel
velocity transformations.

When the boosts are not parallel, their product is a
transformation in SO(1, 3) that can be written as the
product of a boost with a rotation:

B(β1)B(β2) = B(βtot)R(θ) (34)

Multiplying two boost matrices of the form given in
Eq. (31) leads to a simple expression for γtot and a more
complicated expression for βtot

γtot = γ1γ2(1 + β1 · β2)

γtotβtot =
[
γ1γ2 + (γ1 − 1)γ2

β1·β2

β1·β1

]
β1 + γ2β2

(35)

This shows what is intuitively obvious: the boost direc-
tion is in the plane of the two boosts. Less obvious is the
rotation required by noncollinear boosts. It is around an
axis parallel to the crossproduct of the two boosts. When
the two boosts are perpendicular the result is

n̂ sin(θ) = −β1 × β2 ·
γ1γ2

1 + γ1γ2
(36)

When one of the boosts is infinitesimal we find

B(β)B(δβ) = B(β + dβ)R(n̂dθ) (37)

Multiplying out these matrices and comparing the two
sides gives:
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dβ = γ−1δβ +

(
γ−1 − 1

γβ2

)
(β · δβ)β

n̂dθ =

(
1− γ−1

β2

)
δβ × β

(38)

In the nonrelativistic limit, when β is also small, 1 −
γ−1/β2 → 1

2 . This (in)famous factor of 1/2 is known as
the “Thomas factor” in atomic physics.

VI. LIE GROUPS

The group elements g in a Lie group are parameter-
ized by points x in a manifold Mn of dimension n:
g = g(x), x ∈ Mn. The product of two group opera-
tions g(x) and g(y) is parameterized by a point z in the
manifold: g(x) ◦ g(y) = g(z), where z = z(x,y). This
composition law can be very complicated. It is necessar-
ily nonlinear (c.f., Eq. (25) for H3) unless the group is
commutative. For example, the parameter space for the
group SO(3) consists of points in R3: θ = (n̂, θ). Only
a compact subspace consisting of a sphere of radius π is
needed to parameterize this Lie group.

Almost all of the Lie groups of use to physicists ex-
ist as matrix groups. For this reason it is possible for
us to skip over the fundamental details of whether the
composition law must be analytic and the elegant details
of their definition and derivations. The composition law
can be constructed as follows:

1. Construct a useful way to parameterize each group
element as a matrix depending on a suitable num-
ber of parameters.

2. Perform matrix multiplication of two group ele-
ments.

3. Find the group element that corresponds to the
product of the two matrices given in Step 2.

We list several types of matrix groups below.
GL(n;R), GL(n;C), GL(n;Q): These groups con-

sist of n×n invertible matrices, each of whose n2 matrix
elements are real numbers, complex numbers, or quater-
nions. The group composition law is matrix multiplica-
tion. The numbers of real parameters required to specify
an element in these groups are: n2, 2×n2, 4×n2, respec-
tively.

SL(n;R), SL(n;C): The letter “S” here means “spe-
cial” as opposed to G meaning “general” in the matrix
groups described above. These groups are subgroups of
GL(n;R) and GL(n;C) containing the subset of matri-
ces with determinant +1. The real dimensions of these
groups are (n2 − 1)× dim(F ) where dim(F ) = (1, 2) for
F = (R,C).

O(n), U(n), Sp(n): Three important classes of
groups are defined by placing quadratic constraints on

matrices. The orthogonal group O(n) is the subgroup
of GL(n;R) containing only matrices M that satisfy
M tInM = In. Here we use previously introduced no-
tation: In is the unit n × n matrix and t signifies the
transpose of the matrix. This constraint arises in a nat-
ural way when requiring that linear transformations in a
real n-dimensional linear vector space preserve a positive
definite inner product. The unitary group U(n) is the
subgroup of GL(n;C) for which the matrices M satisfy
M†InM = In, where † signifies the adjoint, or complex
conjugate transpose matrix. The symplectic group Sp(n)
is defined similarly for the quaternions. In this case † sig-
nifies quaternion conjugate transpose. The real dimen-
sions of these groups are n(n − 1)/2, n2, and n(2n + 1),
respectively.

SO(n), SU(n): as above, “S” stands for special. For
the group O(n) the determinant of any group element is
a real number whose modulus is +1: i.e., ±1. Placing the
special constraint on the group of orthogonal transforma-
tions reduces the “number” of elements in the group by
one half (in a measure theoretic sense) but does not re-
duce the dimension of the space required to parameterize
the elements in this group. For the group U(n) the deter-
minant of any group element is a complex number whose
modulus is +1: i.e., eiφ. Placing the special constraint on
U(n) reduces the dimension by one: dim SU(n) = n2−1.
The symplectic group Sp(n) has determinant +1.

O(p,q), U(p,q), Sp(p,q): These groups are defined
by replacing In in the definitions for O(n), U(n), Sp(n) by

the matrix Ip,q =

[
+Ip 0

0 −Iq

]
. These groups preserve

an indefinite nonsingular metric in linear vector spaces
of dimension (p + q). The groups O(n), U(n), Sp(n) are
compact (a useful topological concept) and so are rel-
atively easy to deal with. This means effectively that
only a finite volume of parameter space is required to
parameterize every element in the group. The groups
O(p, q), U(p, q), Sp(p, q) are not compact if both p and
q are nonzero. Further, O(p, q) ' O(q, p) by a simple
similarity transformation, and similarly for the others.

VII. LIE ALGEBRAS

A Lie algebra is a linear vector space on which an ad-
ditional composition law [, ] is defined. If X,Y, Z are
elements in a Lie algebra L, then linear combinations are
in the Lie algebra: αX + βY ∈ L (this is the linear vec-
tor space property), the commutator of two operations
[X,Y ] is in L, and in addition the new composition law
satisfies the following axioms:

[αX + βY, Z] = α [X,Z] + β [Y, Z]

[X,Y ] + [Y,X] = 0

[X, [Y,Z]] + [Y, [Z,Z]] + [Z, [X,Y ]] = 0
(39)
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The first of these properties preserves the linear vector
space properties of L. The second property defines the
commutator bracket [, ] as an antisymmetric compositon
law: [X,Y ] = − [Y,X], and the third imposes an integra-
bility constraint called the Jacobi identity.

In principal, commutators are defined by the proper-
ties presented in eq. (39), whether or not composition of
the operators X and Y is defined. If this composition is
defined, then [X,Y ] = XY − Y X and the commutator
can be computed by applying the operators X and Y in
different orders and subtracting the difference. For exam-
ple, if X = y∂z−z∂y (here ∂z = ∂

∂z ) and if Y = z∂x−x∂z,
then the operator XY can be applied to a general func-
tion whose second partial derivatives are continuous to
give XY f(x, y, z) = yfx+yzfxz−z2fxy−xyfzz +zxfyz.
The value of Y Xf(x, y, z) is computed similarly, and the
difference is (XY − Y X)f = yfx − xfy = (y∂x − x∂y)f .
Since this holds for an arbitrary function f(x, y, z) for
which all second partial derivatives exist and are indepen-
dent of the order taken, we find [X,Y ] = (XY − Y X) =
(y∂x − x∂y).

A. Structure Constants

When the underlying linear vector space for L has di-
mension n it is possible to choose a set of n basis vectors
(matrices, operators) Xi. The commutation relations are
encapsulated by a set of structure constants Ckij that
are defined by

[Xi, Xj ] = CkijXk (40)

A Lie algebra is defined by its structure constants.

B. Constructing Lie Algebras by Linearization

Lie algebras are constructed for a Lie group by lin-
earizing the constraints that define the Lie group in the
neighborhood of the identity I. Matrix Lie algebras are
obtained for n × n matrix Lie groups by linearizing the
matrix group in the neighborhood of the unit matrix In.
A Lie group and its Lie algebra have the same dimension.

In the neighborhood of the identity the groups
GL(n;R), GL(n;C), GL(n,Q) have the form

GL(n;F )→ In + δM (41)

where δM is an n×n matrix, all of whose matrix elements
are small. Over the real, complex, and quaternion fields
the matrix elements are small real or complex numbers
or small quaternions. Quaternions q can be expressed as
2× 2 complex matrices using the Pauli spin matrices σµ:

q → (c0, c1) = (r0, r1, r2, r3) =

3∑
µ=0

rµσµ =

[
r0 + ir3 r1 − ir2

r1 + ir2 r0 − ir3

]
(42)

The Lie algebras gl(n;F ) of GL(n;F ) have dimensions
dim(F )×n2, with dim(F ) = 1, 2, 4 = 22 for F = R,C,Q.

For the special linear groups, the determinant of a
group element near the identity is

det(In + δM) = 1 + trδM + h.o.t. (43)

In order to ensure the unimodular condition, the Lie al-
gebras of the special linear groups consist of traceless
matrices. The Lie algebra sl(n;R) of SL(n;R) consists
of real traceless n× n matrices. It has dimension n2 − 1.
The Lie algebra sl(n;C) of SL(n;C) consists of traceless
complex n× n matrices. It has real dimension 2n2 − 2.

Many Lie groups are defined by a metric-preserving
condition: M†GM = G, where G = is some suit-
able metric matrix (see the discussion of the Lorentz
group SO(3, 1) ' SO(1, 3) that preserves the metric
(+1,+1,+1,−1) in Subsec. ?? and the groups O(p,q),
U(p,q), Sp(p,q) in Subsec. ??). The linearization of
this condition is

M†GM = (In + δM)†G(In + δM) = G

so that from M†GM = G it follows that, neglecting
small terms of order two

δM†G + GδM = 0 (44)

Thus the lie algebras so(n;R), su(n;C), sp(n;Q), which
correspond to the case G = In, consist of real antisym-
metric matrices M t = −M , complex traceless antihermi-
tian matrices M† = −M , and quaternion antihermitian
matrices M† = −M , respectively.

The Lie algebra so(3) of the rotation group SO(3) =
SO(3;R) consists of real 3 × 3 antisymmetric matrices.
This group and its algebra are three dimensional. The Lie
algebra (it is a linear vector space) is spanned by three
“basis vectors”. These are 3× 3 antisymmetric matrices.
A standard choice for these basis vectors is given in Eq.
(27). Their commutation relations are given by

[Li, Lj ] = −εijkLk (45)

The structure constants for so(3) are Ckij = −εijk, 1 ≤
i, j, k ≤ 3. Here εijk is the “sign symbol” (antisymmetric
Levi-Civita 3-tensor) which is zero if any two symbols
are the same, +1 for a cyclic permutation of inters (123),
and −1 for a cyclic permutation of (321).

Two Lie algebras with the same set of structure con-
stants are isomorphic. The Lie algebra of 2× 2 matrices
obtained from su(2) is spanned by three operators that
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can be chosen as proportional ( i2 ) to the Pauli spin ma-
trices (c.f., Eq. (42)):

S1 =
i

2

[
0 1

1 0

]
S2 =

i

2

[
0 −i

+i 0

]
S3 =

i

2

[
1 0

0 −1

]
(46)

These three operators satisfy the commutation relations

[Si, Sj ] = −εijkSk (47)

As a result, the Lie algebra for the group so(3) of ro-
tations in R3 is isomorphic to the Lie algebra su(2) for
the group of unimodular metric-preserving rotations in a
complex two dimensional space, SU(2). Spin and orbital
rotations are intimately connected.

C. Constructing Lie Groups by Exponentiation

The mapping of a Lie group, with a complicated non-
linear composition, down to a Lie algebra with a simple
linear combinatorial structure plus a commutator, would
not be so useful if it were not possible to undo this map-
ping. In effect, the linearization is “undone” by the ex-
ponential map. For an operator X the exponential is
defined in the usual way:

EXP (X) = eX = I+X+
X2

2!
+
X3

3!
+· · · =

∞∑
k=0

Xk

k!
(48)

The radius of convergence of the exponential function is
infinite. This means that we can map a Lie algebra back
to its parent Lie group in an algorithmic way.

We illustrate with two important examples. For the
first, we construct a simple parameterization of the group
SU(2) by exponentiating its Lie algebra. The Lie alge-
bra is given in Eq. (46). Define M = i

2 n̂ · σθ. Then

M2 = −(θ/2)2I2 is a diagonal matrix. The exponential
expansion can be rearranged to contain even powers in
one sum and odd powers in another:

eM = I2

(
1− (θ/2)2

2!
+

(θ/2)4

4!
− · · ·

)
+

M

(
1− (θ/2)2

3!
+

(θ/2)4

5!
− · · ·

)
(49)

The even terms sum to cos(θ/2) and the odd terms sum
to sin(θ/2)/(θ/2). The result is

EXP

(
i

2
n̂ · σθ

)
= cos

θ

2
I2 + in̂ · σ sin

θ

2
(50)

A similar power series expansion involving the angular
momentum matrices in Eq. (27) leads to the parameteri-
zation of the rotation group operations given in Eq. (26).
Specifically, EXP (n̂ · Lθ) =

I3 cos θ + n̂ · L sin θ +
[
n̂1 n̂2 n̂3

] n̂1

n̂2

n̂3

 (1− cos θ)

(51)
The Lie groups SO(3) and SU(2) possess isomorphic

Lie algebras. The Lie algebra is three-dimensional. The
basis vectors in so(3) can be chosen as the angular mo-
mentum matrices given in Eq. (27) and the basis vectors
for su(2) as i/2 times the Pauli spin matrices, as in Eq.
(46). A point in the Lie algebra (e.g., R3) can be iden-
tified by a unit vector n̂ and a radial distance from the
origin θ. Under exponentiation, the point (n̂, θ) maps to
the group operation given in Eq. (51) for SO(3) and in
Eq. (50) for SU(2).

The simplest way to explore how the Lie algebra pa-
rameterizes the two groups is to look at how points along
a straight line through the origin of the Lie algebra map
to operations in the two groups. For simplicity we choose
the z-axis. Then (ẑ, θ) maps to

[
eiθ/2 0

0 e−iθ/2

]
∈ SU(2),

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 ∈ SO(3)

(52)
As θ increases from 0 to 2π the SU(2) group operation
varies from +I2 to −I2 while the SO(3) group opera-
tion starts at I3 and returns to +I3. The SU(2) group
operation returns to the identity +I2 only after θ in-
creases from 2π to 4π. The rotations by θ and θ + 2π
give the same group operation in SO(3) but they de-
scribe group operations in SU(2) that differ by sign:
(ẑ, 2π + θ) = −I2 × (ẑ, θ). In short, two 2 × 2 matrices
M and −M in SU(2) map to the same group operation
in SO(3). In words, SU(2) is a double cover of SO(3).

For SU(2) all points inside a sphere of radius 2π in the
Lie albegra map to different group operations, and all
points on the sphere surface map to one group operation
−I2. The group SU(2) is simply connected. Any path
starting and ending at the same point (for example, the
identity) can be continuously contracted to the identity.

By contrast, for SO(3) all points inside a sphere of
radius π in the Lie algebra map to different group opera-
tions, and two points (n̂, π) and −(n̂, π) at opposite ends
of a straight line through the origin map to the same
group operation. The group SO(3) is not simply con-
nected. Any closed path from the origin that cuts the
surface θ = π once (or an odd number of times) can-
not be continuously deformed to the identity. The group
SO(3) is doubly connected.

This is the simplest example of a strong theorem by
Cartan. There is a 1 : 1 relation between Lie algebras and
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simply connected Lie groups. Every Lie group with the
same (isomorphic) Lie algebra is either simply connected
or else the quotient (coset) of the simply connected Lie
group by a discrete invariant subgroup.

For matrix Lie groups, discrete invariant subgroups
consist of scalar multiples of the unit matrix. For
the the isomorphic Lie algebras su(2) = so(3) the Lie
group SU(2) is simply connected. Its discrete invari-
ant subgroup consists of multiples of the identity ma-
trix: {I2,−I2}. Cartan’s theorem states SO(3) =
SU(2)/ {I2,−I2}. This makes explicit the 2 ↓ 1 nature
of the relation between SU(2) and SO(3).

The group SU(3) is simply connected. It discrete in-
variant subgroup consists of

{
I3, ωI3, ω

2I3
}

, with ω3 = 1.
The only other Lie group with the Lie algebra su(3) is
the 3 ↓ 1 image SU(3)/

{
I3, ωI3, ω

2I3
}

. This group has
a description in terms of real eight dimensional matrices
(“the eightfold way”).

D. Cartan Metric

The notation for the structure constants Ckij for a Lie
algebra gives the appearance of being components of a
tensor. In fact, they are: the tensor is first order con-
travariant (in k) and second order covariant, and anti-
symmetric, in i, j. It is possible to form a second order
covariant tensor (Cartan-Killing metric) from the com-
ponents of the structure constant by double contraction:

gij =
∑
rs

CsirC
r
js = gji (53)

This real symmetric tensor “looks like” a metric tensor.
In fact, it has very powerful properties. If g∗∗ is non-
singular the Lie algebra, and its Lie group, is “semisim-
ple” or “simple” (these are technical terms meaning that
the matrices describing the Lie algebras are either fully
reducible or irreducible). If g∗∗ is negative definite, the
group is compact. It is quite remarkable that an algebraic
structure gives such powerful topological information.

As an example, for SO(3) and SU(2) the Cartan-
Killing metric Eq. (53) is

gij =
∑
r,s

(−εirs)(−εjsr) = −δij (54)

For the real forms SO(2, 1) of SO(3) and SU(1, 1) of
SU(2) the Cartan-Killing metric tensor is

g (so(2, 1)) = g (su(1, 1)) =

 +1 0 0

0 +1 0

0 0 −1

 (55)

The structure of this metric tensor (two positive diagonal
elements or eigenvalues, and one negative) tells us about

the topology of the groups: they have two noncompact di-
rections and one compact direction. The compact direc-
tion describes the compact subgroups SO(2) and U(1),
respectively.

E. Operator Realizations of Lie Algebras

Each Lie algebra has three useful operator realizations.
They are given in terms of boson operators, fermion op-
erators, and differential operators.

Boson annihilation operators bi and creation operators

b†j for independent modes i, j = 1, 2, · · · , their fermion

counterparts fi, f
†
j , and the operators ∂i, xj satisfy the

following commutation or anticommutation relations

[
bi, b

†
j

]
= bib

†
j − b

†
jbi = δij{

fi, f
†
j

}
= fif

†
j + f†j fi = δij

[∂i, xj ] = ∂ixj − xj∂i = δij

(56)

In spite of the fact that bosons and differential opera-
tors satisfy commutation relations and fermion operators
satisfy anticommutation (see the + sign in Eq. (56)) re-

lations, bilinear combinations Zij = b†i bj , f
†
i fj , xi∂j of

these operators satisfy commutation relations:

[Zij , Zrs] = Zisδjr − Zrjδsi (57)

These commutation relations can be used to associate
operator algebras to matrix Lie algebras. The procedure
is simple. We illustrate for boson operators. Assume
A,B,C = [A,B] are n×n matrices in a matrix Lie alge-
bra. Associate operator A to matrix A by means of

A→ A = b†iAijbj (58)

and similarly for other matrices. Then

[A,B] =
[
b†iAijbj , b

†
rBrsbs

]
= b†i [A,B]is bs = b†iCisbs = C

(59)
This result holds if the bilinear combinations of boson
creation and annihilation operators are replaced by bi-
linear combinations of fermion creation and annihilation
operators or products of multiplication (by xi) and dif-
ferentiation (by ∂j) operators.

One consequence of this matrix Lie algebra to operator
algebra isomorphism is that any Hamiltonian that can be
expressed in terms of bilinear products of creation and
annihilation operators for either bosons or fermions can
be studied in a simpler matrix form.

The operator algebra constructed from the spin op-
erators in Eq. (46) has been used by Schwinger for an
elegant construction of all the irreducible representations
of the Lie group SU(2) (c.f., Sec. X E and Fig. 4).
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We use the matrix-to-operator mapping now to con-
struct a differential operator realization of the Heisenberg
group, given in Eq. (24). Linearizing about the identify
gives a three-dimensional Lie algebra of the form

 0 l d

0 0 r

0 0 0

 = lL+ rR+ dD (60)

Here L,R,D are 3× 3 matrices. The only nonzero com-
mutator is [L,R] = D. The corresponding differential
operator algebra is

[
x y z

] 0 l d

0 0 r

0 0 0


 ∂x∂y
∂z

 = lL+ rR+ dD (61)

The three differential operators are

L = x∂y R = y∂z D = x∂z (62)

Among these operators: none depends on z (so ∂z has
nothing to operate on) and none contains ∂x, so that in
essence x is an irrelevant variable. A more economical
representation of this algebra is obtained by zeroing out
the cyclic variables z, ∂x and replacing their duals by ∂z, x
by +1 (duality is under the commutator [∂i, xj ] = δij)

[
1 y 0

] 0 l d

0 0 r

0 0 0


 0

∂y
1

 = lL′ + rR′ + dD′ (63)

L′ = ∂y R′ = y D′ = 1 (64)

In essence, we have zeroed out the operators coupled to
the vanishing rows and columns of the matrix Lie algebra
and replaced their dual variables by 1. The representa-
tion given is essentially the Hiesenberg representation of
the position (y) and conjugate momentum (py ' ∂y) op-
erators in Quantum Mechanics.

F. Disentangling Results

It happens surprisingly often in distantly related fields
of physics that expressions of the form ex+∂x are encoun-
tered. Needless to say, these are not necessarily endear-
ing to work with. One approach to simplifying computa-
tions involving such operators is to rewrite the operator
in such a way that all differential operators ∂x act first,
and all multiplications by x act last. One way to effect
this decomposition is to cross one’s fingers and write this
operator as eax+b∂x ' eaxeb∂x and hope for the best. Of

course this doesn’t work, since the operators x and ∂x do
not commute.

Exponential operator rearrangements are called dis-
entangling theorems. Since the exponential mapping
is involved, powerful methods are available when the op-
erators in the exponential belong to a finite-dimensional
Lie algebra. Here is the algorithm:

1. Determine the Lie algebra.
2. Find a faithful finite-dimensional matrix represen-

tation of this Lie algebra.
3. Identify how you want the operators ordered in the

final product of exponentials.
4. Compute this result in the faithful matrix represen-

tation.
5. Lift this result back to the operator form.
Here is how this algorithm works. The operators x and

∂x have one nonzero commutator [∂x, x] = 1. These three
operators close under commutation. They therefore form
a Lie algebra. This is the algebra h3 of the Heisenberg
group, Eq. (64). We also have a faithful matrix repre-
sentation of this Lie algebra, given in Eq. (63). We make
the identification

eax+b∂x → EXP

 0 b 0

0 0 a

0 0 0

 =

 1 b ab
2

0 1 a

0 0 1

 (65)

Now we identify this matrix with

erxedIel∂x →

 1 0 0

0 1 r

0 0 1


 1 0 d

0 1 0

0 0 1


 1 l 0

0 1 0

0 0 1

 (66)

By multiplying out the three matrices in Eq. (66) and
comparing with the matrix elements of the 3× 3 matrix
in Eq. (65) we learn that l = b, r = a, d = ab

2 . Porting
the results of this matrix calculation back to the land of
operator algebras, we find

eax+b∂x = eaxe
ab
2 eb∂x (67)

We will use this expression in Sec. XIV G below to con-
struct a generating function for the Hermite polynomials.

VIII. RIEMANNIAN SYMMETRIC SPACES

A Riemannian symmetric space is a manifold on which
a positive definite metric can be defined everywhere. In
addition, at each point p there is an isometry (transfor-
mation that leaves distances between points unchanged)
that: (1) leaves p fixed; (2) is not the identity; and (3)
whose square is the identity. It was discovered by E. Car-
tan that Riemannian symmetric spaces are very closely
related to Lie Groups. Specifically, they are quotients of
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Lie groups by certain Lie subgroups. We illustrate with
some examples.

The Lie algebra for the Lorentz group consists of 4× 4
matrices:

so(1, 3) =


0 α1 α2 α3

α1 0 θ3 −θ2

α2 −θ3 0 θ1

α3 θ2 −θ1 0

 (68)

The Cartan-Killing metric for SO(1, 3) is given by the
trace of the product of this matrix with itself:

g(so(1, 3)) = α2
1 + α2

2 + α2
3 − θ2

1 − θ2
2 − θ2

3 (69)

The subalgebra of rotations so(3) describes the compact
subgroup SO(3). The remaining three infinitesimal gen-
erators parameterized by αi span the noncompact part of
this group, the coset SO(1, 3)/SO(3), and exponentiate
to boost operations.

Cartan has pointed out that it is often possible to find a
linear transformation, T , of a Lie algebra g to itself whose
square is the identity: T 6= I, T 2 = I. Such a T has two
eigenspaces, k and p, with Tg = T (k⊕ p) = (k	 p). The
two subspaces are orthogonal under the Cartan metric
and satisfy the commutation relations:

[k, k] ⊆ k [k, p] ⊆ p [p, p] ⊆ k (70)

When this is possible, EXP (k) = K is a subgroup of G
and EXP (p) = P = G/K. Further, if the Cartan-Killing
metric is negative definite on k, and positive definite on
p, then K is a maximal compact subgroup of G and the
coset P = G/K is a Riemannian symmetric space. A
Riemannian symmetric space is homogeoeous: every
point looks like every other point. It is not necessarily
isotropic: every direction looks like every other direc-
tion. Spheres are homogeneous and isotropic.

For the Lorentz group SO(1, 3), by Cartan’s crite-
rion SO(3) is the maximal compact subgroup and the
coset of boost transformations B(β) = SO(1, 3)/SO(3)
is a three-dimensional Riemannian space with positive-
definite metric. In this case the space is a 3-hyperboloid
(ct)2−x2−y2−z2 = cst. embedded in R4. The metric on
this space is obtained by moving the metric (1, 1, 1) at the
origin (x, y, z) = (0, 0, 0) over the embedded space using
the set of Lorenz group transformations in the quotient
space SO(1, 3)/SO(3). Cartan also showed that all Rie-
mannian symmetric spaces arise as quotients of (simple)
Lie groups by maximal compact subgroups.

IX. APPLICATIONS IN CLASSICAL PHYSICS

Group Theory’s first important role in physics came
even before Quantum Mechanics was discovered. The

two pillars of classical deterministic physics are Mechan-
ics and Electrodynamics. Group Theory played a fun-
damental role in rectifying the difficulties in describing
the interactions between these two fields. The principle
tool used, besides Group Theory, was Galileo’s Principle
of Relativity and an assumption about the underlying
elegance of physical theories.

A. Principle of Relativity

The Principle of Relativity posits: Two observers, S
and S′, observe the same physical system. Each knows
how his coordinate system is related to the other’s —
that is, the transformation of coordinates that maps one
coordinate system into the other. Assume both observers
collect data on the same physical system. Given the data
that S takes, and the coordinate transformation from S
to S′, S can predict the data that S′ has recorded. And
he will be correct.

Essentially, without this ability to communicate data
among observers, there would be little point in pursuing
the scientific method.

A second assumption that is used is usually not stated
explicitly. This assumption is: The quantitative formu-
lation of physical laws is simple and elegant (whatever
that means).

B. Mechanics and Electrodynamics

The quantitative formulation of Mechanics for a single
particle in an inertial frame is

dp

dt
= F(x) (71)

where p is defined by p = mdx
dt for a particle with fixed

mass m. The transformations from one inertial coordi-
nate system to another consist of: displacements in space
d, displacements in time d, Rigid rotations R, and boosts
with constant velocity v that keep the axis parallel. The
space and time coordinates in S′ are related to those in
S by

x′ = Rx + vt+ d

t′ = t+ d
(72)

In inertial coordinate system S′ Newton’s equations are

dp′

dt
= F′(x′)

x′ = Rx

p′ = Rp

F′ = RF

(73)

The equations of motion have the same vectorial form in
both inertial coordinate systems (the simple and elegant
assumption).
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Newton’s Laws were incredibly successful in describing
planetary motion in our solar system, so when Maxwell
developed his laws for electrodynamics, it was natural to
assume that they also retained their form under the set
of inertial coordinate transformations given in Eq. (72).
Applying these transformations to Maxwell’s equations
creates a big mess. But if one looks only at signals prop-
agating along or opposite the direction of the velocity v,
these assumptions predict

(c dt)′ → c′ dt c′ = c± |v| (74)

The round trip time for a light signal traveling in a cavity
of length L as seen by S is 2L/c while in S′ the time lapse

was predicted to be L
c+v + L

c−v = 2L/c
1−β2 , with β = |v|/c.

This predicted difference in elapsed round trip times
in ‘rest’ and ‘moving’ frames was thought to enable us to
determine how fast the earth was moving in the Universe.
As ever more precise measurements in the late nineteenth
and early twentieth century lead to greater disappoint-
ment, more and more bizarre explanations were created
to ‘explain’ this null result. Finally Einstein and Poincaré
returned to the culprit Eq.(74) and asserted what the ex-
periments showed: c′ = c, so that

(c dt)′ → c dt′ dt′ = linear comb. dx, dy, dz, dt (75)

The condition that the distance function

(c dτ)2 = (c dt)2 − (dx2 + dy2 + dz2) =

(c dt′)2 − (dx′2 + dy′2 + dz′2)
(76)

is invariant leads directly to the transformation law for
infinitesimals dx′µ = Λµνx

ν , where the 4× 4 matrices be-

long to the Lorentz group Λ ∈ SO(3, 1), Λµν = ∂x
′µ/∂xν .

The transformation laws taking inertial frames S to iner-
tial frames S′ involves inhomogeneous coordinate trans-
formations

[
x′

1

]
=

[
SO(3, 1) d

0 1

][
x

1

]
(77)

While Maxwell’s equations remain unchanged in form
under this set of coordinate transformations (inhomoge-
neous Lorentz group), Newton’s force law no longer pre-
serves its form.

In order to find the proper form for the laws of classi-
cal mechanics under this new set of transformations the
following two-step process was adopted:

1. Find an equation that has the proper transforma-
tion properties under the inhomogeneous Lorentz
group;

2. If the equation reduces to Newton’s equation of mo-
tion in the nonrelativistic limit β → 0 it is the
proper generalization of Newton’s equation of mo-
tion.

Appliction of the procedure leads to the relativistic equa-
tion for particle motion

dpµ

dτ
= fµ (78)

where pµ is defined by pµ = mdxµ

dτ . The components of
the relativistic four vector fµ are related to the three-
vector force F by

f = F + (γ)
β · F
β · β

β

f0 = γβ · F
(79)

(c.f., Eq. (31)).

C. Gravitation

Einstein wondered how it could be possible to deter-
mine if you were in an inertial frame. He decided that the
algorithm for responding to this question, Newton’s First
Law (In an inertial frame, an object at rest remains at
rest and an object in motion remains in motion with the
same velocity unless acted upon by external forces.) was
circularly defined (How do you know there are no forces?
When you are sufficiently far away from the fixed stars.
How do you know you are sufficiently far away? When
there are no forces.)

He therefore set out to formulate the laws of mechanics
in such a way that they were invariant in form under an
arbitrary coordinate transformation. While the Lorentz
group is six dimensional, general coordinate transforma-
tions form an “infinite dimensional” group. The transfor-
mation properties at any point are defined by a Jacobian

matrix
[
∂x′µ

∂xν (x)
]
. Whereas for the Lorentz group this

matrix is constant throughout space, for general coordi-
nate transformations this 4× 4 matrix is position depen-
dent.

Nevertheless, he was able to modify the algorithm de-
scribed above to formulate laws that are invariant under
all coordinate transformations. This two-step process is
a powerful formulation of the Equivalence Principle. It is
called the Principle of General Covariance. It states that
a law of physics holds in the presence of a gravitational
field provided:

1. The equation is invariant in form under an arbitrary
coordinate transformation x→ x′(x).

2. In a locally free-falling coordinate system, or the
absence of a gravitational field, the equation as-
sumes the form of a law within the Special Theory
of Relativity.

Using these arguments, he was able to show that the
equation describing the trajectory of a particle is
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d2xµ

dτ2
= −Γµν,κ

dxν

dτ

dxκ

dτ
(80)

The Christoffel symbols are defined in terms of the metric
tensor gµ,ν(x) by

Γµν,κ =
1

2
gµ,ρ

(
∂gν,ρ
∂xκ

+
∂gρ,κ
∂xν

− ∂gν,κ
∂xρ

)
(81)

They are not components of a tensor, as coordinate
systems can be found (freely falling, as in an elevator) in
which they vanish and the metric tensor reduces to its
form in Special Relativity form g = diag(1,−1,−1,−1).

Neither the left hand side nor the right hand side of
Eq. (80) is invariant under arbitrary coordinate changes
(extra terms creep in), but the following transformation
law is valid (Weinberg, 1972)

d2x
′µ

dτ2
+Γ

′µ
ν,κ

dx
′ν

dτ

dx
′κ

dτ
=

(
∂x

′µ

∂xλ

)(
d2xλ

dτ2
+ Γλν,κ

dxν

dτ

dxκ

dτ

)
(82)

This means that the set of terms on the left, or those
within the brackets on the right, have the simple transfor-
mation properties of a four-vector. In a freely falling co-
ordinate system the Christoffel symbols vanish and what

remains is d2xλ

dτ2 . This Special Relativity expression is zero
in the absence of forces, so the equation that describes
the trajectory of a particle in a gravitational field is

d2xλ

dτ2
+ Γλν,κ

dxν

dτ

dxκ

dτ
= 0 (83)

D. Reflections

Two lines of reasoning have entered the reconciliation
of the two pillars of classical deterministic physics and
the creation of a theory of gravitation. One is group the-
ory and is motivated by Galileo’s Principle of Relativity.
The other is more vague. It is a Principle of Elegance:
there is the mysterious assumption that the structure of
the “real” equations of physics are simple, elegant, and
invariant under a certain class of coordinate transforma-
tions. The groups are the 10 parameter Inhomogeneous
Lorentz Group in the case of the Special Theory of Rela-
tivity and the much larger groups of general cordinate
transformations in the case of the General Theory of
Relativity. There is every likelihood that intergalactic
travelers will recognize the Principle of Relativity but no
guarantee that their sense of simplicity and elegance will
be anything like our own.

X. LINEAR REPRESENTATIONS

The theory of representations of groups — more pre-
cisely the linear representations of groups by matrices —
was actively studied by mathematicians while physicists
actively ignored these results. This picture changed dra-
matically with the development of the Quantum Theory,
the understanding that the appropriate “phase space”
was the Hilbert space describing a quantum system, and
that group operations acted in these spaces through their
linear matrix representations.

A linear matrix representation is a mapping of group
elements g to matrices g → Γ(g) that preserves the group
operation:

gi ◦ gj = gk ⇒ Γ(gi)× Γ(gj) = Γ(gk) (84)

Here ◦ is the composition in the group and × indicates
matrix multiplication. Often the mapping is one-way:
many different group elements can map to the same ma-
trix. If the mapping is 1 : 1 the mapping is an isomor-
phism and the representation is called faithful.

A. Maps to Matrices

We have already seen many matrix representations.
We have seen representations of the two-element group
Z2 as reflection, rotation, and inversion matrices acting
in R3 (c.f. Eq. (13)).

So: how many representations does a group have? It
is clear from the example of Z2 that we can create an
infinite number of representations. However, if we squint
carefully at the three representations presented in Eq.
(13) we see that all these representations are diagonal:
direct sums of essentially two distinct one-dimensional
matrix representations:

Z2 e f

Γ1 [1] [1]

Γ2 [1] [−1]

(85)

Each of the three matrix representations of Z2 in Eq.
(13) is a direct sum of these two irreducible represen-
tations:

σZ = Γ1 ⊕ Γ1 ⊕ Γ2

RZ(π) = Γ1 ⊕ Γ2 ⊕ Γ2

P = Γ2 ⊕ Γ2 ⊕ Γ2

(86)

A basic result of representation theory is that for large
classes of groups (finite, discrete, compact Lie groups)
every representation can be written as a direct sum of
irreducible representations. The procedure for construct-
ing this direct sum proceeds by matrix diagonalization.
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Irreducible representations are those that cannot be fur-
ther diagonalized. In particular, one dimensional repre-
sentations cannot be further diagonalized. Rather than
enumerating all possible representations of a group, it
is sufficient to enumerate only the much smaller set of
irreducible representations.

B. Group Element - Matrix Element Duality

The members of a group can be treated as a set of
points. It then becomes possible to define a set of func-
tions on this set of points. How many independent func-
tions are needed to span this function space? A not too
particularly convenient choice of basis functions are the
delta functions fi(g) = δ(g, gi). For example, for C3v

there are six group elements and therefore six basis func-
tions for the linear vector space of functions defined on
this group.

Each matrix element in any representation is a func-
tion defined on the members of a group. It would seem
reasonable that the number of matrix elements in all the
irreducible representations of a group provide a set of ba-
sis functions for the function space defined on the set of
group elements. This is true: it is a powerful theorem.
There is a far-reaching duality between the elements in
a group and the set of matrix elements in its set of irre-
ducible representations. Therefore if Γα(g), α = 1, 2, · · ·
are the irreducible representations of a group G and the
dimension of Γα(g) is dα (i.e., Γα(g) consists of dα × dα
matrices), then the total number of matrix elements is
the order of the group G:

all irreps∑
α

d2
α = |G| (87)

Further, the set of functions
√

dα
|G|Γ

α
rs(g) form a complete

orthonormal set of functions on the group space. The
orthogonality relation is

∑
g∈G

√
dα′

|G|
Γα

′ ∗
r′s′ (g)

√
dα
|G|

Γαrs(g) = δ(α′, α)δ(r′s′, rs)

(88)
and the completeness relation is

∑
α

∑
rs

√
dα
|G|

Γα ∗rs (g′)

√
dα
|G|

Γαrs(g) = δ(g′, g) (89)

These complicated expressions can be considerably
simplified when written in the Dirac notation. Define

〈g| α
rs
〉 =

√
dα
|G|

Γαrs(g), 〈 α
rs
|g〉 =

√
dα
|G|

Γα ∗rs (g) (90)

For convenience, we have assumed that the irreducible
representations are unitary: Γ†(g) = Γ(g−1) and † =t ∗.

In Dirac notation, the orthogonality and completeness
relations are

Orthogonality : 〈 α
′

r′s′
|g〉〈g| α

rs
〉 = 〈 α

′

r′s′
| α
rs
〉

Completeness : 〈g′| α
rs
〉〈 α
rs
|g〉 = 〈g′|g〉

(91)

As usual, doubled dummy indices are summed over.

C. Classes and Characters

The group element - matrix element duality is elegant
and powerful. It leads to yet another duality, somewhat
less elegant but, in compensation, even more powerful.
This is the character - class duality.

We have already encountered classes in Eq. (17). Two
elements c1, c2 are in the same class if there is a group
element, g, for which gc1g

−1 = c2. The character of a
matrix is its trace. All elements in the same class have
the same character in any representation, for

Tr Γ(c2) = Tr Γ(gc1g
−1) = Tr Γ(g)Γ(c1)Γ(g−1) = Tr Γ(c1)

(92)
The last result comes from invariance of the trace under
cyclic permutation of the argument matrices.

With relatively little work, the powerful orthogonal-
ity and completeness relations for the group elements -
matrix elements can be transformed to corresponding or-
thogonality and completeness relations for classes and
characters. If χα(i) is the character for elements in class
i in irreducible representation α and ni is the number of
group elements in that class, the character-class duality
is described by the following relations:

Orthogonality :
∑
i

niχ
α′∗(i)χα(i) = |G|δ(α′, α) (93)

Completeness :
∑
α

niχ
α∗(i)χα(i′) = |G|δ(i′, i) (94)

D. Fourier Analysis on Groups

The group C3v has six elements. Its set of irreducible
representations has a total of six matrix elements. There-
fore d2

1 + d2
2 + · · · = 6. This group has three classes. By

the character-class duality, it has three irreducible repre-
sentations. As a result, d1 = d2 = 1 and d3 = 2. The
matrices of the six group elements in the three irreducible
representations are:
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Γ1 Γ2 Γ3

e [1] [1]

[
1 0

0 1

]

C+
3 [1] [1]

[
−a b

−b −a

]

C−3 [1] [1]

[
−a −b
b −a

]

σ1 [1] [−1]

[
−1 0

0 1

]

σ2 [1] [−1]

[
a b

b −a

]

σ3 [1] [−1]

[
a −b
−b −a

]

a = 1
2 b =

√
3

2

(95)

The character table for this group is

{e}
{
C+

3 , C
−
3

}
{σ1, σ2, σ3}

1 2 3

χ1 1 1 1

χ2 1 1 −1

χ3 2 −1 0

(96)

The first line shows how the group elements are appor-
tioned to the three classes. The second shows the number
of group operations in each class. The remaining lines
show the trace of the matrix representatives of the ele-
ments in each class in each representation. For example,
the −1 in the middle of the last line is −1 = − 1

2−
1
2 . The

character of the identity group element e is the dimension
of the matrix representation, dα.

We use this character table to perform a Fourier anal-
ysis on representations of this group. For example, the
representation of C3v = S3 in terms of 3×3 permutation
matrices is not irreducible (c.f., Eq. (15)). For various
reasons we might like to know which irreducible represen-
tations of C3v are contained in this reducible representa-
tion. The characters of the matrices describing each class
are:

{e}
{
C+

3 , C
−
3

}
{σ1, σ2, σ3}

χ3×3 3 0 1
(97)

To determine the irreducible content of this representa-
tion we take the inner product of Eq. (97) with the rows
of Eq. (96) using Eq. (93) with the results

〈χ3×3|χ1〉 = 1× 3× 1 + 2× 0× 1 + 3× 1× 1 = 6

〈χ3×3|χ2〉 = 1× 3× 1 + 2× 0× 1 + 3× 1×−1 = 0

〈χ3×3|χ3〉 = 1× 3× 2 + 2× 0×−1 + 3× 1× 0 = 6
(98)

As a result, the permutation representation is reducible
and χ3×3 ' χ1 ⊕ χ3.

Remark on Terminology: The cyclic group Cn
has n group elements gk, k = 0, 1, 2 · · · , n − 1 that
can be identified with rotations through an angle θk =
2πk/n. This group is is abelian. It therefore has n
one-dimensional irreducible matrix representations Γm,
m = 0, 1, 2, · · ·n−1 whose matrix elements are Γm(θk) =[
e2πikm/n

]
. Any function defined at the n equally spaced

points at angles θk around the circle can be expressed in
terms of the matrix elements of the unitary irreducible
representations of Cn. The study of such functions, and
their transforms, is the study of Fourier Series. This anal-
ysis method can be applied to functions define along the
real line R1 using the unitary irreducible representations
Γk(x) =

[
eikx

]
of the commutative group of translations

Tx along the real line through the distance x. This is
Fourier Analysis on the real line. This idea generalizes
to groups and their complete set of unitary irreducible
representations.

E. Irreps of SU(2)

The unitary irreducible representations (“UIR” or “ir-
reps”) of Lie groups can be constructed following two
routes. One route begins with the group. The second
begins with its Lie algebra. The second method is sim-
pler to implement, so we use it here to construct the
hermitian irreps of su(2) and then exponentiate them to
the unitary irreps of SU(2).

The first step is to construct shift operators from the
basis vectors in su(2):

S+ = Sx + iSy =

[
0 1

0 0

]

S− = Sx − iSy =

[
0 0

1 0

]

Sz = 1
2

[
1 0

0 −1

]
[Sz, S±] = ±S±
[S+, S−] = 2Sz

(99)
Next, we use the matrix algebra to operator algebra map-
ping (c.f., Sec. VII E) to construct a useful boson opera-
tor realization of this Lie algebra:
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S+ → S+ = b†1b2

S− → S− = b†2b1

Sz → Sz =
1

2

(
b†1b1 − b

†
2b2

)
(100)

The next step introduces representations. Introduce a

state space on which the boson operators b1, b
†
1 act, with

basis vectors |n1〉, n1 = 0, 1, 2, · · · with the action given
as usual by

b†1|n1〉 = |n1 +1〉
√
n1 + 1 b1|n1〉 = |n1−1〉

√
n1 (101)

Introduce a second state space for the operators b2, b
†
2 and

basis vectors |n2〉, n2 = 0, 1, 2, · · · . In order to construct
the irreducible representations of su(2) we introduce a
grid, or lattice, of states |n1, n2〉 = |n1〉 ⊗ |n2〉. The
operators S±,Sz are number-conserving and move along
the diagonal n1 + n2 = cnst. (c.f., Fig. 4). It is very
useful to relabel the basis vectors in this lattice by two
integers. One (j) identifies the diagonal, the other (m)
specifies position along a diagonal:

FIG. 4: Angular momentum operators J have isomorphic
commutation relations with specific biliner combinations b†i bj
of boson creation and annihilation operators for two modes.
The occupation number for the first mode is plotted along
the x axis and that for the second mode is plotted along the
y axis. The number-conserving operators act along diago-
nals like the operators J+, J−, Jz to easily provide states and
matrix elements for the su(2) operators.

2j = n1 + n2 n1 = j +m

2m = n1 − n2 n2 = j −m
|n1, n2〉 ↔ |

j

m
〉

(102)
The spectrum of allowed values of the quantum number
j is 2j = 0, 1, 2, · · · and m = −j,−j + 1, · · · ,+j.

The matrix elements of the operators S with respect to

the basis | j
m
〉 are constructed from the matrix elements

of the operators b†i bj on the basis vectors |n1, n2〉. For Sz
we find

Sz|
j

m
〉 = 1

2 (b†1b1 − b
†
2b2)|n1, n2〉 =

|n1, n2〉 12 (n1 − n2) = | j
m
〉m

(103)

For the shift-up operator

S+|
j

m
〉 = b†1b2|n1, n2〉 = |n1 + 1, n2 − 1〉

√
n1 + 1

√
n2 =

| j

m+ 1
〉
√

(j +m+ 1)(j −m)

(104)
and similarly for the shift-down operator

S−|
j

m
〉 = | j

m− 1
〉
√

(j −m+ 1)(j +m) (105)

In this representation of the (spin) angular momentum
algebra su(2), Sz = Jz is diagonal and S± = J± have
one nonzero diagonal row just above (below) the main
diagonal. The hermitian irreducible representations of
su(2) with j = 0, 1

2 , 1,
3
2 , 2,

5
2 · · · form a complete set of

irreducible representations for this Lie algebra.

The unitary irreducible representations of SU(2) are
obtained by exponentiating i times the hermitian repre-
sentations of su(2):

DJ [SU(2)] = EXPin̂ · Jθ (106)

with Jx = (J++J−)/2 and Jy = (J+−J−)/2i, and J∗ are
the (2j + 1) × (2j + 1) matrices whose matrix elements
are given in Eqs. (103-105). The (2j + 1) × (2j + 1)
matrices DJ are traditionally called Wigner matrices.
For many purposes only the character of an irreducible
representation is needed. The character depends only
on the class and the class is uniquely determined by the
rotation angle θ (rotations by angle θ about any axis n̂ are
geometrically equivalent). It is sufficient to compute the
trace of any rotation, for example the rotation about the
z axis. This matrix is diagonal:

(
eiJzθ

)
m′,m

= eimθδm′,m

and its trace is

χj(θ) =

+j∑
m=−j

eimθ =
sin(j + 1

2 )θ

sin 1
2θ

(107)

These characters are orthonormal with respect to the
weight w(θ) = 1

π sin2
(
θ
2

)
.
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TABLE II: (top) Character table for the cubic group Oh. The
functions in the right-hand column are some of the basis vec-
tors that “carry” the corresponding representation. (bottom)
Characters for rotations through the indicated angle in the
irreducible representations of the rotation group.

Oh E 8C3 3C2
4 6C2 6C4 Basis

A1 1 1 1 1 1 r2 = x2 + y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 (x2 − y2, 3z2 − r2)

T1 3 0 −1 −1 1 (x, y, z), (Lx, Ly, Lz)

T2 3 0 −1 1 −1 (yz, zx, xy)

L : θ 0 2π
3

2π
2

2π
2

2π
4

Reduction

0 S 1 1 1 1 1 A1

1 P 3 0 −1 −1 1 T1

2 D 5 −1 1 1 −1 E ⊕ T2

3 F 7 1 −1 −1 −1 A2 ⊕ T1 ⊕ T2

4 G 9 0 1 1 1 A1 ⊕ E ⊕ T1 ⊕ T2

5 H 11 −1 −1 −1 1 E ⊕ 2T1 ⊕ T2

F. Crystal Field Theory

The type of Fourier analysis outlined above has found
a useful role in Crystal (or Ligand) Field Theory. This
theory was created to describe the behavior of charged
particles (electrons, ions, atoms) in the presence of an
electric field that has some symmetry, usually the sym-
metry of a host crystal. We illustrate with a simple ex-
ample.

A many-electron atom with total angular momentum
L is placed in a crystal field with cubic symmetry. How
do the 2L+ 1-fold degenerate levels split?

Before immersion in the crystal field, the atom has
spherical symmetry. Its symmetry group is the rotation
group, the irreducible representations DL have dimension
2L+1, the classes are rotations through angle θ, and the
character for the class θ in representation DL is given
in Eq. (107) with j → L (integer). When the atom is
placed in an electric field with cubic symmetry Oh, the
irreducible representations of SO(3) become reducible.
The irreducible content is obtained through a character
analysis.

The group Oh has 24 operations partitioned into five
classes. These include the identity E, eight rotations C3

by 2π/3 radians about the diagonals through the oppo-
site vertices of the cube, six rotations C4 by 2π/4 radians
about the midpoints of opposite faces, three rotations C2

4

by 2π/2 radians about the same midpoints of opposite
faces, and six rotations C2 about the midpoints of op-
posite edges. The characters for these five classes in the
five irreducible representations are collected in the char-
acter table for Oh. This is shown at the top in Table
II. At the bottom of the table are the characters of the

irreducible representations of the rotation group SO(3)
in the irreducible representations of dimension 2L + 1.
These are obtained from Eq. (107). A character anal-
ysis (c.f., Eq. (98)) leads to the Oh irreducible content
of each of the lowest six irreducible representations of
SO(3).

XI. SYMMETRY GROUPS

Groups first appeared in the Quantum Theory as a
tool for labelling eigenstates of a Hamiltonian with use-
ful quantum numbers. If a Hamiltonian H is invariant
under the action of a group G, then gHg−1 = H, g ∈ G.
If |ψαµ 〉 satisfies Schrödinger’s time-independent equation
H|ψαµ 〉 − E|ψαµ 〉 = 0, so that

g(H− E)|ψαµ 〉 =
{
g(H− E)g−1

}
g|ψαµ 〉 =

(H− E)|ψαν 〉〈ψαν |g|ψαµ 〉 = (H− E)|ψαν 〉Dαν,µ(g)

(108)

All states |ψαν 〉 related to each other by a group trans-
formation g ∈ G (more precisely, a group repressenttion
Dα(g)) have the same energy eigenvalue. The existence
of a symmetry group G for a Hamiltonian H provides
representation labels for the quantum states and also de-
scribes the degeneracy patterns that can be observed. If
the symmetry group G is a Lie group, so that g = eX ,
then eXHe−X = H ⇒ [X,H] = 0. The existence of oper-
ators X that commute with the Hamiltonian H is a clear
signal that the physics described by the Hamiltonian is
invariant under a Lie group.

For example, for a particle in a spherically symmetric
potential V (r) Schrödinger’s time-independent equation
is

(p · p
2m

+ V (r)
)
ψ = Eψ (109)

with p = (~/i)∇. The Hamiltonian operator is invari-
ant under rotations. Equivalently, it commutes with the
angular momentum operators L = r× p: [L,H] = 0.
The wavefunctions can be partly labeled by rotation
group quantum numbers, l and m: ψ → ψlm(r, θ, φ).
In fact, by standard separation of variables arguments
this description can be made more precise: ψ(r, θ, φ) =
1
rRnl(r)Y

l
m(θ, φ). Here Rnl(r) are radial wavefunctions

that depend on the potential V (r) but the angular func-
tion Y lm(θ, φ) is “a piece of geometry”: it depends only
on the existence of rotation symmetry. It is the same no
matter what the potential is. In fact, these functions can
be constructed from the matrix representations of the
group SO(3). The action of a rotation group operation
g on the angular functions is

gY lm(θ, φ) = Y lm′(θ, φ)Dlm′m(g) (110)
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where the construction of the Wigner D matrices has
been described in Sec. X E.

If the symmetry group is reduced, as in the case of
SO(3) ↓ Oh described in Sec. X F, the eigenstates are
identified by the labels of the irreducible representations
of Oh: A1, A2, E, T1, T2.

Once the states have been labeled, computations must
be done. At this point the power of group theory becomes
apparent. Matrices must be computed — for example,
matrix elements of a Hamiltonian. Typically, most ma-
trix elements vanish (by group-theoretic selection rules).
Of the small number that do not vanish, many are sim-
ply related to a small number of the others. In short,
using group theory as a guide, only a small number of
computations must actually be done.

This feature of group theory is illustrated by comput-
ing the eigenstates and their energy eigenvalues for an
electron in the N = 4 multiplet of the hydrogen atom
under the influence of a constant external field E. The
Hamiltonian to be diagonalized is

〈N ′ L
′

M ′
|p · p

2m
− e2

r
+ eE · r|N L

M
〉 (111)

The first two terms in the Hamiltonian describe the elec-
tron in a Coulomb potential, the last is the Stark per-
turbation, which describes the interaction of a dipole
d = −er with a constant external electric field: HSt. =
−d · E. In the N = 4 multiplet we set N ′ = N = 4,
so that L′, L = 0, 1, 2, 3 and M ranges from −L to
+L and −L′ ≤ M ′ ≤ +L′. The matrix elements of
the Coulomb Hamiltonian are ENδN ′NδL′LδM ′M , with
E4 = −13.6/42eV .

There are
∑3=4−1
L=0 (2L + 1) = 16 states in the N = 4

multiplet, so 162 matrix elements of the 16 × 16 ma-
trix must be computed. We simplify the computation by
choosing the z axis in the direction of the applied uni-
form electric field, so that eE · r → eEz (E = |E|). In

addition we write z =
√

4π
3 rY

1
0 (θ, φ). The matrix ele-

ments factor (separation of variables) into a radial part
and an angular part, as follows:

〈4L′M ′|eEz|4LM〉 → eE × Radial×Angular

Radial =
∫∞

0
R4L′(r)r1R4L(r)dr

Angular =
√

4π
3

∫
Y L

′∗
M ′ (Ω)Y 1

0 (Ω)Y LM (Ω)dΩ

(112)

where Ω = (θ, φ) and dΩ = sin θdθdφ.
Selection rules derived from SO(3) simplify the angular

integral. First, the integral vanishes unless ∆M = M ′ −
M = 0. It also vanishes unless ∆L = ±1, 0. By parity,
it vanishes if ∆L = 0, and by time reversal its value for
M and −M are the same. The nonzero angular integrals
are

A(L,M) =

√
4π

3

∫
Ω

Y L∗M ′ (Ω)Y 1
0 (Ω)Y L−1

M (Ω)dΩ =

δM ′M

√
(L+M)(L−M)

(2L+ 1)(2L− 1)

(113)
The radial integrals also satisfy selection rules: they

vanish unless ∆L = ±1. The nonzero integrals are all
related:

R(N,L) =

∫ ∞
0

RN,L(r)rRN,L−1dr =
N
√
N2 − L2

2
√

3
×R(2, 1)

(114)
with 1 ≤ L ≤ N − 1. All integrals are proportional to
the single integral R(2, 1). This comes from yet another
symmetry that the Coulomb potential exhibits (c.f. Sec.
XII below), not shared by other spherically symmetric
potentials. The single integral to be evaluated is

R(2, 1) = −3
√

3a0 (115)

This integral is proportional to the Bohr radius a0 of the
hydrogen atom, whose value was estimated in Eq. (6).

The arguments above show drastic simplifications in
the computational load for computing the energy eigen-
functions and eigenvalues of a many electron atom in a
uniform external electric field (Stark problem).

Of the 256 = 162 matrix elements to compute only
18 are nonzero. All are real. Since the Hamiltonian is
hermitian (symmetric if real) there are in fact only 9
nonzero matrix elements to construct. Each is a product
of two factors, so only 6 (angular) plus 1 (radial) quanti-
ties need be computed. These numbers must be stuffed
into a 16×16 matrix to be diagonalized. But there are no
nonzero matrix elements between states with M ′ 6= M .
This means that by organizing the row and columns ap-
propriately the matrix can be written in block diagonal
form. The block diagonal form consists of a 1× 1 matrix
for M = 3, a 2 × 2 matrix for M = 2, a 3 × 3 matrix
for M = 1, a 4 × 4 matrix for M = 0, a 3 × 3 matrix
for M = −1, etc. The 1 × 1 matrices are already diago-
nal. The 2 × 2 matrices are identical, so only one needs
to be diagonalized. Similarly for the two 3 × 3 matri-
ces. There is only one 4× 4 matrix. The computational
load for diagonalizaing this matrix has been reduced from
T ' 162 log 16 to T ' 22 log 2+32 log 3+42 log 4, a factor
of 20 (assuming the effort required for diagonalizing an
n× n matrix goes like n2 log n)!

It gets even better. For the N = 5 multiplet the
1 × 1, 2 × 2, 3 × 3, 4 × 4 matrices are all proportional to
the matrices of the corresponding size for N = 4. The
proportionality factor is 5/4. Only one new matrix needs
to be constructed — the 5 × 5 matrix. This symmetry
extends to all values of N .
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This is a rather simple example that can be carried out
by hand. This was done when Quantum Mechanics was
first developed, when the fastest computer was a greased
abacus. Today time savings of a factor of 20 on such
a simple problem would hardly be noticed. But calcu-
lations have also inflated in size. Reducing a 106 × 106

matrix to about 1000 103×103 reduces the computational
effort by a factor of 2000. For example, a computation
that would take 6 years without such methods could be
done in a day with these methods.

Symmetry groups play several roles in Quantum Me-
chanics.

• They provide group representation labels to iden-
tify the energy eigenstates of a Hamiltonian with
symmetry.

• They provide selection rules that save us the effort
of computing matrix elements whose values are zero
(by symmetry!).

• And they allow transformation of a Hamiltonian
matrix to block diagonal form, so that the compu-
tational load can be drastically reduced.

XII. DYNAMICAL GROUPS

A widely accepted bit of wisdom among Physicists is
that symmetry implies degeneracy, and the larger the
symmetry, the larger the degeneracy. What works for-
ward ought to work backward (“Newton’s Third Law”):
if the degeneracy is greater than expected, the symmetry
is greater than apparent.

A. Conformal Symmetry

The hydrogen atom has rotational symmetry SO(3),
and this requires 2L+ 1 fold degeneracy. But the states
with the same principal quantum number N are all de-
generate in the absence of spin and other relativistic ef-
fects, and nearly degenerate in the presence of these ef-
fects. It would make sense to look for a larger than ap-
parent symmetry. It exists in the form of the Runge-
Lenz vector M = 1

2m (p× L− L× p) − e2r/r, where
r,p,L = r× p are the position, momentum, and orbital
angular momentum operators for the electron. The three
orbital angular momentum operators Li and three com-
ponents of the Runge-Lenz vector close under commu-
tation to form a Lie algebra. The six operators com-
mute with the Hamiltonian, so the “hidden” symmetry
group is larger than the obvious symmetry group SO(3).
On the bound states this Lie algebra describes the Lie
group SO(4). The irreducible representation labels for
the quantum states are N , N = 1, 2, 3...,∞. The three
nested groups SO(2) ⊂ SO(3) ⊂ SO(4) and their repre-
sentation labels and branching rules are:

Group Rep.Label Degeneracy Branching Rules

SO(4) N N2

SO(3) L 2L+ 1 0, 1, 2, · · ·N − 1

SO(2) M 1 −L ≤M ≤ +L
(116)

Branching rules identify the irreducible representations
of a subgroup that any representation of a larger group
branches to under group - subgroup reduction. We have
seen branching rules in Table II.

One advantage of using the larger group is that there
are more shift operators in the Lie algebra. The shift
operators, acting on one state, moves it to another (c.f.

|LM〉 L+−→ |L,M + 1〉). This means that there are well-
defined algebraic relations among states that belong to
the same N multiplet. This means that more of any
computation can be pushed from the physical domain to
the geometric domain, and simplifications accrete.

Why stop there? In the hydrogen atom the energy dif-
ference between the most tightly bound state, the ground
state, and the most weekly bound state (N → ∞) is
13.6 eV . When this difference is compared with the elec-
tron rest energy of 511 KeV , the symmetry-breaking
is about 13.6/511000 ' 0.000027 or 2.7 × 10−3%. This
suggests that there is a yet larger group that accounts
for this near degeneracy. Searches eventually lead to
the noncompact conformal group SO(4, 2) ⊃ SO(4) · · ·
as the all-inclusive “symmetry group” of the hydrogen
atom. The virtue of using this larger group is that states
in different multiplets N,N ± 1 can be connected by
shift operators within the algebra so(4, 2), and ultimately
there is only one number to compute. Including this
larger group in Eq. (116) would include inserting it in
the row above SO(4), showing there is only one represen-
tation label for bound states, indicating its degeneracy is
“∞”, and adding branching rules N = 1, 2 · · · ,∞ to the
SO(4) row.

B. Atomic Shell Structure

Broken symmetry beautifully accounts for the system-
atics of the chemical elements. It accounts for the filling
scheme as electrons enter a screened Coulomb potential
around a nuclear charge +Ze as the nuclear charge in-
creases from Z = 1 to Z > 92. The screening is caused
by “inner electrons”. The filling scheme accounts for the
“magic numbers” among the chemical elements: these
are the nuclear charges of exceptionally stable chemical
elements He, Ne, Ar, Kr, Xe, Rn with atomic numbers
2, 10, 18, 36, 54, 86.

When more than one electron is present around a
nuclear charge +Ze then the outer electrons “see” a
screened central charge and the SO(4) symmetry aris-
ing from the Coulomb nature of the potential is lost.
There is a reduction in symmetry, a “broken symmetry”:
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SO(4) ↓ SO(3). The quantum numbers (N,L) can be
used to label states and energies, EN,L and these energy
levels are (2L+ 1)-fold degenerate. The SO(4) multiplet
with quantum number N splits into orbital angular mo-
mentum multiplets with L values ranging from L = 0 to
a maximum of L = N − 1.

Each additional electron must enter an orbital that is
not already occupied by the Pauli Exclusion Principle.
This Principle is enforced by the requirement that the
total electron wavefunction transform under the unique
antisymmetric representation Γanti.(Sk) on the permuta-
tion group Sk for k electrons.

Generally, the larger the L value the further the outer
electron is from the central charge, on average. And the
further it is, the larger is the negative charge density con-
tributed by inner electrons that reduces the strength of
the central nuclear attraction. As a result EN,0 < EN,1 <
· · · < EN,L=N−1. There is mixing among levels with dif-
ferent values of N and L. The following energy order-
ing scheme, ultimately justified by detailed calculations,
accounts for the systematics of the chemical elements,
including the magic numbers:

1S|2S 2P |3S 3P |4S 3D 4P |5S 4D 5P |6S 4F 5D 6P |7S
(117)

Each level can hold 2(2L+ 1) electrons. The first factor
of 2 = (2s + 1) with s = 1

2 is due to electron spin. The
vertical bar | indicates a large energy gap. The cumu-
lative occupancy reproduces the magic numbers of the
chemical elements: 2, 10, 18, 36, 54, 86. The filling order
is shown in Fig. 5. Broken symmetry is consistent with
Mendeleev’s periodic table of the chemical elements.

C. Nuclear Shell Structure

Magic numbers among nuclei suggested that, here also,
one could possibly describe many different nuclei with a
single simple organizational structure. The magic num-
bers are: 2, 8, 20, 28, 40, 50, 82, 126, both for protons and
for neutrons. The following model was used to organize
this information.

Assume that the effective nuclear potential for protons
(or neutrons) is that of a a three-dimensional isotropic
harmonic oscillator. The basis states can be described
by |n1, n2, n3〉. One excitation would be three-fold de-
generate: |1, 0, 0〉, |0, 1, 0〉, |0, 0, 1〉, two excitations would
be 6-fold degenerate, and states with N excitations would
have a degeneracy (N+2)(N+1)/2. Under a spherically
symmetric perturbation these highly degenerate multi-
plets would split into mutliplets identified by an angular
momentum index. A character analysis gives this branch-
ing result

FIG. 5: Broken SO(4) dynamical symmetry due to screen-
ing of the central Coulomb potential by inner electrons suc-
cessfully accounts for the known properties of the chemical
elements, as reflected in Mendeleev’s Periodic Table of the
Chemical Elements.

N L Values Spectroscopic

0 0 S

1 1 P

2 2, 0 D,S

3 3, 1 F, P

4 4, 2, 0 G,D, S

(118)

For example, the N = 4 harmonic oscillator multiplet
splits into an L = 4 multiplet, an L = 2 multiplet, and
an L = 0 multiplet. The larger the angular momentum,
the lower the energy. After this splitting, the spin of
the proton (or neutron) is coupled to the orbital angular
momentum to give values of the total angular momentum
J = L± 1

2 , except that for S states only the J = 1
2 state

occurs. Again, the larger angular momentum occurs at a
lower energy than the smaller angular momentum. The
resulting filling order, analogous to Eq. (117), is
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0S1/2|1P3/2 1P1/2|2D5/2 2S1/2 2D3/2|3F7/2|
3P3/2 3F5/2 P1/2 4G9/2|4D5/2 4G7/2 4S1/2 4D3/2 5H11/2|
5H9/2 5F7/2 5F5/2 5P3/2 5P1/2 6I13/2|

(119)
Each shell with angular momentum j can hold up to
2j+1 nucleons. Broken symmetry is also consistent with
the “periodic table” associated with nuclear shell models.
The filling order is shown in Fig. 6.

FIG. 6: The filling order describing very many properties of
nuclear ground states is described by the levels of an isotropic
harmonic oscillator potential with multiplets having N exci-
tations and degeneracy (N + 1)(N + 2)/2. The degeneracy
is broken by a spherically symmetric perturbation and bro-
ken further by spin-orbit coupling. For both perturbations
energy increases as angular momentum decreases. The filling
order shown successfully accounts for the known properties
of the ground states of most even-even nuclei, including the
magic numbers. In the higher levels the largest spin angular
momentum state (e.g., 5H11/2) is pushed down into the next
lower multiplet, containing all the remaining N = 4 states,
with the exception of the 4G9/2.

At a group theoretical level, our starting point has been

the Lie algebra u(3) with basis vectors b†i bj (1 ≤ i, j ≤ 3)
whose representations are labeled by an integer index
N , the number of excitations present. This algebra can
be embedded in a larger Lie algebra containing in ad-

dition shift up operators b†i , their counterpart annihi-
lation operators bj , and the identity operator I. The
Lie algebra is 9 + 2 · 3 + 1 = 16 = 42 dimensional, and
is closely related to the noncompact Lie algebra u(3, 1).
The embedding u(3) ⊂ u(3, 1) is analogous to the inclu-
sion SO(4) ⊂ SO(4, 2) for the hydrogen atom.

D. Dynamical Models

In this Section so far we have described the hydro-
gen atom using a very large group SO(4, 2) and breaking
down the symmetry to SO(4) and further to SO(3) when
there are Coulomb-breaking perturbations that maintain
their spherical symmetry. We have also introduced a se-
quence of groups and subgroups U(3, 1) ↓ U(3) ↓ SO(3)
to provide a basis for the nuclear shell model.

Nuclear computations are very difficult because there
is “no nuclear force”. The force acting between nucleons
is a residual force from the quark-quark interaction. This
is analogous to the absence of a “molecular force”. There
is none - the force that binds together atoms in molecules
is the residual electromagnetic force after exchange and
other interactions have been taken into account.

For this reason it would be very useful to develop a sys-
tematic way for making nuclear models and carrying out
calculations within the context of these models. Group
theory to the rescue!

The first step in creating a simple environment for
quantitative nuclear models is to assume that pairs of
nucleons bind tightly into boson-like excitations. The
leading assumption is that of all the nuclear-pair de-
grees of freedom, the most important are those with
scalar (S,L = 0) and quadrupole (D,L = 2) trans-
formation properties under the rotation group SO(3).
States in a Hilbert space describing 2 protons (neu-
trons, nucleons) can be produced by creation operators
s†, d†m acting on the vacuum |0; 0, 0, 0, 0, 0〉. For n pairs
of nucleons, n creation operators act to produce states
|ns;n−2, n−1, n0, n1, n2〉 with ns +

∑
m nm = n. There

are (n + 6 − 1)!/n!(6 − 1)! states in this Hilbert space.
For computational convenience they can be arranged by
their transformation properties under rotations SO(3).
For example, the two boson Hilbert space has 21 states
consisting of an L = 0 state from s†s†, an L = 2 mul-
tiplet from s†d†m, and multiplets with L = 0, 2, 4 from

d†m′d†m.
The Hamiltonian acts within the space with a fixed

number of bosons. It must therefore be constructed from
number-conserving operators: b†i bj ,where the boson op-
erators include the s and d excitations. These opera-
tors must be rotationally invariant. At the linear level
only two such operators exist: s†s and d†mdm. At the
quadratic level there are a small number of additional
rotationally invariant operators. The n boson Hamilto-
nian can therefore be systematically parameterized by a
relatively small number of terms. The parameters can be
varied in attempts to fit models to nuclear spectra and
transition rates. In the two boson example with 21 states,
it is sufficient to diagonalize this Hamiltonian in the two-
dimensional subspace of L = 0 multiplets, in another two
dimensional subspace with the two states with L = 2 and
ML = 2 (all other ML values will give the same result),
and the one-dimensional suspace with L = 4,ML = 4.

The Interacting Boson Model (IMB) outlined above
has deeply extended our understanding of nuclear physics
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(Arima and Iachello, 1976). In fact, some Hamiltonians
can be solved “by hand”. These involve a group-subgroup
chain. The chain of groups is shown in Fig. 7. This model
incorporates in a magnificent way the use of groups in
their capacity as symmetry groups, implying degeneracy,
and dynamical groups, implying relations among multi-
plets of different energies.

FIG. 7: States with 2N nucleons outside a closed shell are
described by N bosons in the Interating Boson Model. The
basis states carry a symmetric representation of the Lie group
U(6). Various limiting Hamiltonians that exhibit a group-
subgroup symmetry can be diagonalized by hand. The three
group-subgroup chains for which this is possible are shown
here.

XIII. GAUGE THEORY

Gauge transformations were introduced by Weyl fol-
lowing Einstein’s development (1916) of the Theory of
General Relativity. In crude terms, Weyl’s original idea
was to introduce a ruler (the “gauge” of gauge theory)
whose length was an arbitrary function of position. His
original objective was to unify the two then-known forces
of Nature: gravitation and electromagnetism. His theory
is quite beautiful but Einstein raised serious objections,
and Weyl eventually relinquished it. Einstein’s objection
was that if Weyl’s theory were correct then the results of
laboratory experiments would depend on the history of
the material being investigated.

Weyl came back to this general idea following
Schrödinger’s development (1926) of Wave Mechanics. In
this case a modified objective was achieved: he succeeded
in describing how light interacts with charged matter.

The original theory (GR) involved a real scaling trans-
formation that was space-time dependent. As a result,
it is in the same spirit as the discussion about scaling in
Sec. II C, but more general. His modified theory (QM)
involved a complex phase transformation. In some sense

this would be an analytic continuation of the scaling ar-
guments, but the spirit of the discussion given in Sec.
II C does not in any sense suggest phase changes.

The starting point of this work is the observation that
if ψ(x, t) satisfies Schrödinger’s time-dependent equation,
so also does eiφψ(x, t), for

(
H− i~ ∂

∂t

)
eiφψ(x, t) = eiφ

(
H− i~ ∂

∂t

)
ψ(x, t) = 0

(120)
This fails to be true if the phase φ depends on space-
time coordinates, for then the derivative terms act on
this phase when we try to pull it through the Hamiltonian
and time-derivative operators:

((p · p
2m

)
+ qΦ(x, t)− i~ ∂

∂t

)
eiφ(x,t)ψ(x, t) =

eiφ(x,t)

(
(p + ~∇φ)2

2m
+ qΦ(x, t) + ~

∂φ

∂t
− i~ ∂

∂t

)
ψ(x, t)

(121)
Symmetry is not preserved! What to do?
It had long been known that the electric and magnetic

fields E,B could be represented by “fictitious” poten-
tials that served to simplify Maxwell’s equations but were
otherwise “not real”. The vector potential A and scalar
potential Φ are related to the “real” fields by

B = ∇×A

E = −∇Φ− 1

c

∂A

∂t

(122)

This simplification is not unique. The vector potential
can be changed by the addition of the gradient of a
scalar field χ(x, t), and the scalar potential correspond-
ingly changed:

A → A′ = A +∇χ ⇒ B′ = B

Φ → Φ′ = Φ− 1

c

∂χ

∂t
⇒ E′ = E

(123)

The resolution of the difficulty is to assume that the
electrostatic part of the interaction is described by the
term qΦ(x, t) in the Hamiltonian and the magnetic part
is represented by replacing p by p− q

cA(x, t) wherever it
appears in the Hamiltonian. Under these conditions

(
p− q

c
A(x, t)

)
eiφ(x,t) = eiφ(x,t)

(
p− q

c
A(x, t) + ~∇φ(x, t)

)
(124)

and

(
qΦ− i~ ∂

∂t

)
eiφ(x,t) = eiφ(x,t)

(
qΦ + ~

∂φ

∂t
− i~ ∂

∂t

)
(125)
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If we choose φ(x, t) = − q
~cχ(x, t), then the added terms

on the right in Eq. (124) are

p− q

c
A(x, t)− q

c
∇χ(x, t) = p− q

c
A′(x, t) (126)

and those on the right in Eq. (125) are

qΦ(x, t)− q

c

∂χ(x, t)

∂t
− i~ ∂

∂t
= qΦ′(x, t)− i~ ∂

∂t
(127)

The result is that the structure of the interaction be-
tween the electromagnetic fields and charged particles is
invariant provided the interaction is given in terms of the
“fictitious” fields A,Φ by

p→ p− q

c
A(x, t) − i~ ∂

∂t
→ −i~ ∂

∂t
+ qΦ(x, t) (128)

There are several other ways to couple the electromag-
netic field with charged particles that are allowed by sym-
metry (Bethe and Salpeter, 1957). But the structure of
the interaction described by Eq. (128) is sufficient to
account for all known measurements. It turns out that
Maxwell’s equations are also a consequence of the struc-
ture of this interaction.

This principle is called the Principle of Minimal Elec-
tromagnetic Coupling.

The phase transformation introduced in Eq. (120)
belongs to the Lie group U(1). Its generalization to
position-dependent phase eiφ(x,t) does not belong to a
Lie group.

Questions soon surfaced if the same process could be
used to describe the interaction between more compli-
cated “charged” particles and the fields that cause inter-
actions among them. It seemed that the proton-neutron
pair was a good candidate for such a treatment. These
two particles seemed to be essentially the same, except
that one was charged and the other not. Neglecting
charge, these two particles could be treated as an isospin
doublet. The nucleon wavefunction φ could be treated

as a two-state system: |φ〉 = | ψp
ψn
〉 and the Hamiltonian

describing nuclear interactions should be invariant un-
der a global SU(2) transformation, analogous to a global
U(1) transformation eiφ in Eq. (120). If the SU(2)
rotation were allowed to vary with position, perhaps it
would be possible to determine the nature of the inter-
action between the nucleons (fermions) and the bosons
(π±, π0, analogous to photons that carry the electromag-
netic interaction) responsible for the interaction among
the fermions.

This program was carried out by Yang and Mills.
They succeeded in determining the nature of the inter-
action. But we now understand that nuclear interactions
are residual forces left over from the strong interactions
among the quarks.

Nevertheless, the program persisted. The gauge pro-
gram can be phrased as follows.

1. Suppose there is a set of n fermion fields that are
invariant under a g-parameter Lie group.

2. Assume that the Hamiltonian (Lagrangian, Ac-
tion Integral) for these fields, without any interaction,
is known.

3. Now assume that the Lie group parameters are
allowed to be functions on spacetime. What additional
terms occur in the Hamiltonian (c.f., Eq. (121) above).

4. How many boson fields must be introduced in order
to leave the structure of the Hamiltonian invariant?

5. How must they be introduced into the Hamiltonian.
That is: what is the structure of the “Minimal Coupling”
in terms of the Lie algebra parameters (its structure con-
stants)?

6. How do these new fields transform under the Lie
group and its spacetime extension?

7. What field equations do the new fields satisfy?
These questions have all been answered (Utiyama

1956). The number of new fields required is exactly the
number of generators of the Lie group (i.e., its dimen-
sion). Each field is a four component field. Their dy-
namical equations are a consequence of this theory. All
new fields are massless.

This theory has been applied to describe the elec-
troweak interaction U(2) ' U(1) × SU(2) to predict
the massless electromagnetic field and three boson fields
called W±, Z0 that transmit the weak interaction. This
theory was also applied to describe three quarks. The
Lie group used was SU(3) and the theory predicted the
existence of eight (that’s the dimension of the Lie group
SU(3)) gluon fields, all massless. The gluon fields trans-
mit the strong interaction. In the case of the gluons,
the mass seems to be small enough to be consistent with
“zero” but that is definitely not the case of the very mas-
sive weak gauge bosons W±, Z0. A new mechanism was
called for, and proposed, to describe how these “mass-
less” particles acquire such a heavy mass. This mecha-
nism was proposed by Higgs, among others, and is called
the Higgs mechanism. The discovery of the Higgs boson
has recently been announced.

XIV. GROUP THEORY AND SPECIAL
FUNCTIONS

A. Summary of Some Properties

The classical special functions of mathematical physics
were developed in the 19th century in response to a va-
riety of specific physical problems. They include the
Legendre and associated Legendre functions, the La-
guerre and associated Laguerre functions, the Gegen-
bauer, Chebyshev, Hermite, and Bessel functions. They
are for the most part orthogonal polynomials. They are
constructed by choosing a basis set f0, f1, f2, · · · that are
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monomials in the position representation (Dirac nota-
tion): 〈x|f0〉 = x0, 〈x|f1〉 = x1, 〈x|f2〉 = x2, · · · and
then creating an orthogonal set by successive Gramm-
Schmidt orthogonalization by means of an inner product

〈f |g〉 =
∫ b
a
f∗(x)g(x)w(x)dx with various weights w(x)

for the different functions:

|φ0〉 = |f0〉, |φ1〉 = |f1〉 −
|φ0〉〈φ0|
〈φ0|φ0〉

|f0〉

|φj〉 = |fj〉 −
j−1∑
k=0

|φk〉〈φk|
〈φk|φk〉

|fj〉
(129)

The Bessel functions are the exception to this rule, as
they are not polynomials.

These functions obey a common variety of properties

Differential Equation:

g2(x)y′′ + g1(x)y′ + g0(x)y = 0 (130a)

Recurrence Relations:

a1nfn+1(x) = (a2n + a3nx)fn(x)− a4nfn−1(x) (130b)

Differential Relations:

g2(x)
dfn(x)

dx
= g1(x)fn(x) + g0(x)fn−1(x) (130c)

Generating Functions:

g(x, z) =

∞∑
n=0

anfn(x)zn (130d)

Rodrigues’ Formula:

fn(x) =
1

anρ(x)

dn

dxn
{ρ(x)(g(x))n} (130e)

The coefficients and functions can be found in standard
tabulations (e.g., Abramowicz and Stegun). The Bessel
functions have similar properties.

B. Relation with Lie Groups

A Lie group lives on a manifold Mn of dimension n.
Each group operation is a function of position in the man-
ifold: g = g(x), x ∈ M. The product of two group oper-
ations is defined by an analytic composition law on the
manifold:

g(x) ◦ g(y) = g(z) z = z(x, y) (131)

It is not until we construct representations for the
group, or on top of the manifold, that really interesting
things begin to happen. Representations

g(x)→ Γαij(g(x)) (132)

are functions defined on the manifold. Suitably normal-
ized, the set of matrix elements for the complete set of
UIR (unitary irreducible representations) form a com-
plete orthonormal set of functions on the manifold Mn.
By duality (the miracles of Hilbert space theory), the
triplet of indices α, i, j is described by as many integers as
the dimension ofMn. For example, for three dimensional
Lie groups, such as SO(3), SU(2), SO(2, 1), ISO(2), H3

the matrix elements are indexed by three integers and

can be represented in the form Γαij(g(x)) = 〈 α
i
|g(x)| α

j
〉.

Including the appropriate normalization factor, they can
be expressed as

√
dim(α)

V ol(G)
Γαij(g(x)) = 〈g(x)| α

i, j
〉 (133)

For noncompact groups V ol(G) is not finite, but dim(α)
is also not finite, so the ratio under the radical needs tobe
taken with care.

Representations are powerful because they lie in two
worlds: geometric and algebraic. They have one foot
in the manifold (〈g(x)| ' 〈x| above) and the other in

algebra ( | α
ij
〉 ' |n〉 above).

All classical special functions are specific matrix el-
ements, evaluated on specific submanifolds, of specific
irreducible representations of some Lie group.

We illustrate these ideas with a few examples without
pretending we’ve even scratched the surface of this vast
and fascinating field.

C. Spherical Harmonics and SO(3)

For the group SU(2) the underlying manifold is a solid
three-dimensional sphere. There are many ways to pa-
rameterize an operation in this group. We use an Euler-
angle like parameterization introduced by Wigner:

Djmk(φ, θ, ψ) = 〈 j
m
|e−iφJze−iθJye−iψJz | j

k
〉 =

e−imφdjmk(θ)e−ikψ

(134)

The orthogonality properties of the matrix elements are

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ 2π

0

dψ Dj
′∗
m′k′(φ, θ, ψ)Djmk(φ, θ, ψ)

=
8π2

2j + 1
δj

′jδm′mδk′k

(135)
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The volume of the group in this parameterization is 8π2.
The normalization factor, converting the matrix elements
to a complete orthonormal set, is

√
(2j + 1)/8π2.

In order to find a complete set of functions on the
sphere (θ, φ) we search for those matrix elements above
that are independent of the angle ψ. These only occur for
k = 0, which occurs only among the subset of irreducible
representations with j = l (integer). Integrating out the
dψ dependence in Eq. (134) leads to a definition of the
spherical harmonics in terms of some Wigner D matrix
elements (c.f., Eq. (135):

Y lm(θ, φ) =

√
2l + 1

4π
Dl∗m0(φ, θ,−) (136)

These functions on the two-dimensional unit sphere sur-
face (θ, φ) inherit their orthogonality and completeness
properties from the corresponding properties of the UIR
matrix elements Djmk on the three-dimensional solid
sphere of radius 2π.

Other special functions are similarly related to these
matrix elements. The associated Legendre polynomials
are

Pml (cos θ) =

√
(l +m)!

(l −m)!
dl0,0(θ) (137)

and the Legendre polynomials are

Pl(cos θ) = Dl0,0(−, θ,−) = dl0,0(θ) (138)

These functions inherit the their measure w(θ) from the
measure on SU(2) and their orthogonality and complete-
ness properties from those of the Wigner rotation matrix
elements Djmk [SU(2)].

We emphasize again that these functions are specific
matrix elements Djmk, evaluated on specific submanifolds
(sphere, line), of specific irreducible representations (j =
l) of SU(2).

D. Differential and Recursion Relations

We can understand the wide variety of relations that
exist among the special functions (e.g., recursion rela-
tions, etc.) in terms of group theory/representation the-
ory as follows. It is possible to compute the matrix el-
ements of an operator O in either the continuous basis
〈x′|O|x〉 or the discrete basis 〈n′|O|n〉. In the first basis
the coordinates x describe a submanifold in the group
manifoldMn, and the operator is a differential operator.
In the second basis the indices n are an appropriate sub-
set of the group representation α and row/column (i, j)
index set and operator is a matrix with entries in the real
or complex field.

It is also possible to compute the matrix elements in a
mixed basis 〈x|O|n〉. It is in this basis that really exciting
things happen, for

〈x|O|n〉
↙ ↘

〈x|O|x′〉〈x′|n〉 = 〈x|n′〉〈n′|O|n〉
(139)

On the left hand side a differential operator 〈x|O|x′〉 acts
on the special function 〈x′|n〉, while on the right-hand
side a matrix 〈n′|O|n〉 multiplies the special functions
〈x|n′〉.

For the rotation group acting on the sphere surface

(θ, φ) and the choice O = L± we find for 〈θφ|L±|
l

m
〉

computed as on the left in Eq.(139)

e±iφ
(
± ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
δ(cos θ′ − cos θ)δ(φ′ − φ)Y lm(θ′, φ′)

= e±iφ
(
± ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
Y lm(θ, φ)

(140)
and as computed on the right

〈θφ| l
′

m′
〉〈 l

′

m′
|L±|

l

m
〉 = Y lm±1(θ, φ)

√
(l ±m+ 1)(l ∓m)

(141)
There are a number of Lie groups that can be de-

fined to act on a one dimensional space. In such cases
the infinitesimal generators take the form of functions of
the coordinate x and the derivative d/dx. We illustrate
the ideas behind differential and recursion relations in
the context of the Hiesenberg group H3. Its algebra h3

is spanned by three operators, universally identified as
a, a†, I with commutation relations

[
a, a†

]
= I, [a, I] =[

a†, I
]

= 0. These operators have matrix elements as fol-
lows in the continuous basis (geometric) representation:

〈x′|a|x〉 = δ(x′ − x) 1√
2
(x+D)

〈x′|a†|x〉 = δ(x′ − x) 1√
2
(x−D)

〈x′|I|x〉 = δ(x′ − x)

(142)

and discrete basis (algebraic) representation:

〈n′|a|n〉 = δn′,n−1
√
n

〈n′|a†|n〉 = δn′,n+1

√
n′

〈n′|I|n〉 = δn′,n

(143)

Here D = d
dx .

The special functions are the mixed basis matrix el-
ements 〈x|n〉. We can compute these starting with the
ground, or lowest, state |0〉.
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〈x|a|0〉
↙ ↘

〈x|a|0〉 = 〈x|n〉〈n|a|0〉
1√
2
(x+D)〈x|0〉 = 0

(144)

This equation has a unique solution N〈x|0〉 = e−x
2/2 up

to scale factor, N = 1/ 4
√
π.

The remaining normalized basis states are constructed
by applying the raising operator:

〈x|n〉 = 〈x| (a
†)n

n!
|x′〉〈x′|0〉 =

(x−D)n√
2nn!
√
π
e−x

2/2

=
Hn(x)e−x

2/2√
2nn!
√
π

(145)
The Hermite polynomials in Eq. (145) are defined by

Hn(x) = e+x2/2(x−D)ne−x
2/2 (146)

The states 〈x|n〉 are normalized to +1.
In order to construct the recursion relations for the

Hermite polynomials, choose O = x = (a + a†)/
√

2 in
Eq. (139). Then

〈x|O|n〉 = x
Hn(x)e−x

2/2√
2nn!
√
π

=
1√
2
〈x|n′〉〈n′|(a+ a†)|n〉

(147)
The two nonzero matrix elements on the right are given in
Eq. (143). They couple xHn(x) on the left with Hn±1(x)
on the right. When the expression is cleaned up the
standard recursion relation is obtained:

2x Hn(x) = Hn+1(x) + 2n Hn−1(x) (148)

The differential relation is obtained in the same way,
replacing x = (a + a†)/

√
2 by D = (a − a†)/

√
2 in Eq.

(147). On the left hand side we find the derivative of

Hn(x) as well as the derivative of e−x
2/2, and on the

right hand side a linear combination of Hn±1(x). When
the expression is cleaned up there results the standard
differential relation

H
′

n(x) = 2n Hn−1(x) (149)

E. Differential Equation

It happens often that an operator can be formed that
is quadratic in the basis vectors of the Lie algebra and
it also commutes with every element in the Lie algebra.
Such operators can always be constructed for semisimple

Lie algebras where the Cartan metric gij (c.f., Eq. (53))
is nonsingular. The operator gijXiXj has this property.
The construction of nontrivial quadratic operators with
this property is even possible for many Lie algebras that
are not semisimple. When it is possible, the left-hand
side of Eq. (139) is a second order differential operator
and the right hand side is a constant. This constant is
the eigenvalue in the differential equation (first property
listed above).

For the three-dimensional nonsemisimple group
ISO(2) of length-preserving translations and rotations
of the plane to itself, the three infinitesimal generators
are L3, which generates rotations around the z axis, and
T1, T2, which generate displacements in the x and y direc-
tions. The operators T1 and T2 commute. The operators
L3, T± = T1 ± iT2 satisfy commutation relations

[
L3, T±

]
= ±T±

[
T+, T−

]
= 0 (150)

When acting on the plane, the three can be expressed in
terms of a radial (r) and angular (φ) variable.

L3 =
1

i

∂

∂φ
T± = e±iφ

(
± ∂

∂r
+
i

r

∂

∂φ

)
(151)

Basis vectors |m〉 are introduced that satisfy the condi-
tion

L3|m〉 = m|m〉 ⇒ 〈rφ|m〉 = gm(r)eimφ (152)

Single-valuedness requires m is an integer. Adjacent ba-
sis vectors are defined by

T±|m〉 = −|m± 1〉 ⇒
(
± d

dr
− m

r

)
gm(r) = −gm±1(r)

(153)
Finally, the identity T+T−|m〉 = |m〉 gives Bessel’s equa-
tion

(
1

r

d

dr
r
d

dr
+ 1− m2

r2

)
gm(r) = 0 (154)

F. Addition Theorems

Addition theorems reflect the group composition prop-
erty through the matrix multiplication property of rep-
resentations:

〈n|g(x)g(y)|n′〉
↙ ↘∑

k〈n|g(x)|k〉〈k|g(y)|n′〉 = 〈n|g [z(x,y)] |n′〉
(155)

The special function at argument z is expressed as a pair-
wise product of special functions evaluated at the group
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elements g(x) and g(y) for which x ◦ y = z. The best-
known of these addition results is

Dl00(Θ) = Dl0m(g−1
1 )Dlm0(g2)

Dl00(Θ) = Dl∗m0(g1)Dlm0(g2)
2l + 1

4π
Pl(cos Θ) =

∑
m

Y lm(θ1, φ1)Y l∗m (θ2, φ2)
(156)

Here we have taken g1 = (θ1, φ1,−) and g2 = (θ2, φ2,−),
and Θ is the angle between these two points on the sphere
surface, defined by

cos Θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2 − φ1) (157)

G. Generating Functions

Generating functions are constructed by computing
the exponential of an operator O in the Lie algebra in
two different ways and then equating the results. We il-

lustrate for H3 by computing 〈x|e
√

2ta† |0〉. We first com-
pute the brute strength Taylor series expansion of the
exponential:

〈x|et(x−D)|x′〉〈x′|0〉 = e−x
2/2 1

4
√
π

∞∑
n=0

tn Hn(x)

n!
(158)

Here 〈x|0〉 = e−x
2/2/ 4
√
π. Eq. (146) was used to obtain

this result.
Next, we observe that exponentials of differential op-

erators are closely related to Taylor series expansions, for

instance e−t
d
dx f(x) = f(x−t). To exploit this we use the

result of the disentangling theorem Eq. (67) to write

et(x−D) = etxe−t
2/2e−tD (159)

Then

〈x|et(x−D)|x′〉〈x′|0〉 = etxe−t
2/2e−tD〈x|0〉 =

1
4
√
π
etxe−t

2/2e−(x−t)2/2
(160)

By comparing the two calculations, Eq. (158) with Eq.
(160), we find the standard generating function for the
Hermite polynomials.

e2xt−t2 =

∞∑
n=0

tnHn(x)

n!
(161)

XV. SUMMARY

The study of symmetry has had a profound influence
on the development of the natural sciences. Group The-
ory has been used in constructive ways before groups
even existed. We have given a flavor of what can be
done with symmetry and related arguments in Sec. II,
which describes three types of arguments that live in
the same ballpark as Group Theory. Groups were for-
mally introduced in Sec. III and a number of examples
given, ranging from finite groups to Lie groups. Trans-
formation groups played a big role in the development
of classical physics: mechanics and electrodynamics. In
fact, it was the need to formulate these two theories so
that their structure remained unchanged under transfor-
mations from the same group that led to the Theory of
Special Relativity. The group at hand was the Inhomo-
geneous Lorentz Group, the 10-parameter Lie group of
Lorentz transformations and translations acting on fields
defined over space-time. Sec. IX describes how group
theory played a role in the development of Special Rel-
ativity. The next step beyond requiring invariance un-
der the same Lorentz transformation at every space-time
point involved allowing the Lorentz transformation to
vary from point to point in a continuous way and still
requiring some kind of invariance (c.f., Gauge Theories
as discussed in Sec. XIII). This extended aesthetic led
to the Theory of General Relativity.

Up to this point Physicists could have done without
all the particular intricacies of Group Theory. The next
step in the growth of this subject was the intensive study
of the linear representations of groups. The growth was
indispensible when Quantum Theory was developed, be-
cause groups acted in Hilbert spaces through their linear
matrix representations. We provided an overview of rep-
resentation theory in Sec. X. At first, groups were ap-
plied in the Quantum Theory as symmetry groups (c.f.,
Sec. XI. In this capacity they were used to describe
the degeneracies in energy levels that were required by
symmetry. Shortly afterward they were used in a more
daring way to describe nondegenerate levels related to
each other either by a broken symmetry or simply by op-
erators that had little to do with symmetry but had the
good sense to close under commutation with each other.
Some applications of Dynamical Groups are described in
Sec. XII.

Gauge theories were briefly treated in Sec. XIII. In
such theories one begins with a symmetry group and re-
quires that a Hamiltonina, Lagrangian, or Action remain
“invariant” under the transformation when the parame-
ters of the transformation group are allowed to be func-
tions over space-time. It is remarkable that this require-
ment leads to the prediction of new fields, the nature of
the interaction of the new fields with the original fields,
the structure of the equations of the new fields, and the
mass spectrum of these new fields: all new masses are
zero. This problem was overcome by proposing that a
new particle, now called the Higgs boson, exists. It’s
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discovery was announced in 2012.
As a closing tribute to the theory of groups and their

linear matrix representations, we hint how the entire the-
ory of the Special Functions of Mathematical Physics,
which was created long before the Lie groups were in-
vented, is a study of the properties of specific matrix ele-
ments of specific matrix representations of particular Lie
groups acting over special submanifolds of the differen-
tiable manifold that parameterizes the Lie group. These
ideas are sketched by simple examples in Sec. XIV.

Group theory has progressed from the outer fringes
of theoretical physics in 1928, when it was referred to
as the Gruppenpest (1928 Weyl to Dirac at Princeton),
through the mainstream of modern physics, to wind up
playing the central role in the development of physical
theory. Theoretical Physicists now believe that if a the-
ory of fundamental interactions is not a gauge theory it
doesn’t have the right to be considered a theory of inter-
actions at all. Gauge theory is the new version of ‘simple’
and ‘elegant’.

We learn that Nature was not tamed until Adam was
able to give names to all the animals. Just so, we can’t
even give names to particles and their states without
knowing at least a little bit about group theory. Group
theory has migrated from the outer fringes of physics
(Gruppenpest, 1928) to the central player, even the lin-
gua franca, of modern physics.
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