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Abstract

The classical orthogonal functions of mathematical physics are
closely related to Lie groups. Specifically, they are matrix elements
of, or basis vectors for, unitary irreducible representations of low-
dimensional Lie groups. We illustrate this connection for: The Wigner
functions, spherical harmonics, and Legendre polynomials; the Bessel
functions; and the Hermite polynomials. These functions are associ-
ated with the Lie groups: the rotation group SO(3) in three-space and
its covering group SU(2); the Euclidean group in the plane E(2) or
ISO(2); and the Heisenberg group H4.

1 Introduction

There are many different approaches to understanding the classical special
functions of Mathematical Physics. These include: solutions to second or-
der ordinary differential equations; orthogonal polynomials (excluding Bessel
and analogous functions); expressions obtained from contour integrals in the
complex plane; integral transforms of other functions; specializations of gen-
eralized hypergeometric or related series; connections with Lie groups. All
but the last point of view are well-served by texts or other sources that are
accessible at the undergraduate level [1, 2, 3, 4, 5, 6, 7, 8, 9]. Excellent ex-
positions of the relation between Lie group theory and the special functions
exist at the advanced level since 1968 [10, 11, 12, 13] but even today there is
no source for this information that is accesssible at the undergraduate level.

The purpose of the present work is to make this connection clear at a
more elementary level. We do this by briefly providing an overview of the
details of this connection, and then providing three explicit examples. The
examples begin with a choice of group — in the present work the groups are
the rotation group, the Euclidean group in the plane, and the Heisenberg
group. In each case we introduce the group as a simple, low-dimensional ma-
trix group depending on a suitable number of parameters. Then spaces are
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introduced on which the group acts. These are spaces of functions depend-
ing on continuous variables, in which case the group acts through differential
operators. They also include spaces with a discrete set of basis vectors, in
which case the group acts through its matrix representations. The connection
between these spaces is equivalent to an overlap integral — typically depend-
ing on some continuous variables and an equal number of discrete variables.
These discretely indexed functions are the classical special functions of math-
ematical physics. All their properties are reflections of the properties of the
representations of these groups and of the group operations themselves.

An overview is presented in Sec. 2. Applications to the rotation group
SO(3) and its covering group SU(2) are presented in Sec. 3; to the Euclidean
group in the plane E(2) or ISO(2) are presented in Sec. 4; and to the Heisen-
berg group H3 or H4 are presented in Sec. 5. In the closing Section (Sec.
6) we provide a brief summary of some of the steps taken since the creation
of Wave Mechanics in 1926 provoked the evolution of our understanding of
this aspect of the theory of special functions. This work grew out of an
undergraduate thesis by one of the authors [14].

2 Overview

The operations in a Lie group G can be parameterized by points a ∈ Rn

in an n-dimensional manifold (n = 3 or 4 in this work): g(a) ∈ G. It
is usual to parameterize the identity I by the point with coordinates 0,
so that group operations near the identity can be represented in the form
g(δa) = I + δaiXi + h.o.t. The operators Xi (i = 1, 2, · · · , n) are obtained
by linearization of the group operation in the neighborhood of the identity.
The infinitesimal generators Xi close under commutation, [Xi, Xj] = c k

ijXk,
and the constants c k

ij are called structure constants. The operators Xi span
the Lie algebra g of the Lie group G.

Operations g(a) ∈ G can be recovered by inverting the linearization pro-
cess. This is done via the exponential mapping:

g(a) = ea·X = e
∑
aiXi (1)

In this parameterization g−1(a) = g(−a).
The group operations g(a) can be mapped isomorphically (1 : 1, invert-

ible) or homomorphically (2 : 1 or 3 : 1 etc., locally invertible) to matrices
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acting on a linear vector space with a discrete basis |n〉:

g(a)|n〉 = |n′〉〈n′|g(a)|n〉 (2)

These matrices provide a representation of the group. If the mapping is 1:1
the representation is faithful. If the set of matrices representing a group
cannot be simultaneously block diagonalized, the matrix representation is
irreducible. This matrix representation is unitary if

〈n′|g−1(a)|n〉 = 〈n|g(a)|n′〉∗ (3)

The matrix elements are functions of discrete indices N = (n′,n) as well as
the continuous variables a. It is useful to emphasize the duality between
the discrete and continuous varibles by writing these functions in the Dirac
notation

〈n′|g(a)|n〉 = 〈a|N〉 = fN(a) (4)

Here fN(a) is one of the special functions.
The usual properties of the classical special functions can all be expressed

by computing suitable operators in a mixed basis in two ways:

〈a|O|N〉

↙ ↘

〈a|O|a′〉〈a′|N〉 = 〈a|N′〉〈N′|O|N〉

(5)

The summation convention (sums / integrals occur over repeated indices) is
adopted throughout.

On the left the operator 〈a|O|a′〉 is expressed in the continuous basis. It
is typically a first- or second- order differential operator, acting on the special
function fN(a′). On the right the operator 〈N′|O|N〉 is a matrix element,
depending on the discrete indices N′,N, and 〈a|N′〉〈N′|O|N〉 is a sum over
special functions evaluated at point a.

In the cases of interest, it is always possible to choose operators Xi,
i = 1, 2, 3, · · · so that [X3, X1 ± iX2] = ±(X1± iX2). The three different Lie
groups that we study differ in the value of the commutator [X1, X2].

The properties of the special functions are related to the choice of operator
O as follows:
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Table 1: Some Lie groups and the special functions associated with them.
Lie Group(s) Special Function(s)

Special Unitary Group SU(2) Wigner Functions, Jacobi Polynomials
Rotation Group SO(3) Spherical Harmonics, Legendre Polynomials
Euclidean Group ISO(2), E(2) Bessel Functions
Heisenberg Groups H3, H4 Hermite Polynomials
Special Linear Group SL(2;R) Hypergeometric Functions
Special Orthogonal Group SO(n) Gegenbauer Functions
Third-order Triangular Matrices Laguerre Polynomials, Whittaker Functions

Second order differential equation: O is an operator quadratic in the
infinitesimal generators Xi (“Casimir operator”) that commutes with
all infinitesimal generators: [O, Xi] = 0.

Generating Functions: O = etX± .

Recurrence Relations: O = X+ +X−.

Differential Relations: O = X+ −X−

Addition theorems are a direct consequence of the group multiplication
law:

〈n′|g(a)g(b)|n〉

↙ ↘

〈n′|g(a)|n′′〉〈n′′|g(b)|n〉 = 〈n′|g(c)|n〉

(6)

where c is some function of the coordinates a and b: c = h(a,b).
A more complete picture of the relation between some Lie groups and

some special functions is presented in Table 1.
We now illustrate some details of these relations for the three groups:

SU(2) ∼= SO(3); E(2) = ISO(2); H4.
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3 SU(2) and SO(3)

The rotation group SO(3) with infinitesimal generators Lj and the group
SU(2) with infinitesimal generators Sj = i

2
σj (σ are the Pauli spin matri-

ces) have isomorphic commutation relations. Therefore the two groups are
closely related: SO(3) is a 2 : 1 image of SU(2) [15]. As a result, all the uni-
tary irreducible representations of SO(3) are obtained as a subset of all the
unitary irreducible representations of SU(2). These in turn are obtained as
symmetrized tensor products of the smallest faithful unitary representation,
consisting of 2 × 2 matrices. These matrices, which are called Wigner rota-
tion matrices, can be parameterized by three rotation angles (φ, θ, ψ). The
Wigner rotation matrices Dj

m′m(φ, θ, ψ) have been used in physics for a long
time [15]. We begin our discussion of the connection between Lie groups and
special functions with a description of the connection of the matrix elements
of the Wigner rotation matrices with the Wigner functions, the spherical
harmonics, and the Legendre polynomials.

3.1 Rotation Group Matrix Elements

The rotation group has a simple parameterization in terms of Euler angles
when acting in R3:

R(φ, θ, ψ) = e−iφJze−iθJye−iψJz (7)

where Jx, Jy, Jz describe rotations about the x-, y-, and z-axes, respectively.
Their commutation relations, when expressed in terms of the angular mo-
mentum operators Li = εijkxj(~/i)∂k (where i = 1, 2, 3 or x, y, z and ~ = 1)
are

[Jx, Jy] = iJz
[Jy, Jz] = iJx
[Jz, Jx] = iJy

(8)

The second order operator J2 = J2
x + J2

y + J2
z commutes with all Ji, and so

has constant value in any irreducible representation of this group.
Irreducible representations are constructed by introducing basis vectors

| j
m
〉, with 2j = 0, 1, 2, · · · and m = −j,−j + 1, · · · ,+j.
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In a 2j + 1 dimensional irreducible representation the matrix elements of
J2, Jz, J± = Jx ± iJy are

〈 j
′

m′
|J2| j

m
〉 = j(j + 1)δj

′jδm′m

〈 j
′

m′
|Jz|

j
m
〉 = mδj

′jδm′m

〈 j
′

m′
|J+|

j
m
〉 =

√
(j −m)(j +m′)δj

′jδm′,m+1

〈 j
′

m′
|J−|

j
m
〉 =

√
(j +m)(j −m′)δj′jδm′,m−1

(9)

The action of the rotation operation Eq. (7) on the basis vectors | j
m
〉

is given by

R(φ, θ, ψ)| j
m
〉 = | j

m′
〉〈 j
m′
|R(φ, θ, ψ)| j

m
〉 = | j

m′
〉Dj

m′m(φ, θ, ψ) (10)

The matrix elements of the Wigner D matrix are

Dj
m′m(φ, θ, ψ) = e−im

′φdjm′m(θ)e−imψ (11)

and the matrix elements of the Wigner (little) d matrix are

djm′m(θ) =
(
e−iθJy

)
m′m

= [(j +m′)!(j −m′)!(j +m)!(j −m)!]
1/2

∑
s

(−1)m
′−m+s

s!(m′ −m− s)!(j +m− s)!(j −m′ − s)!

(
cos(

θ

2
)

)2j+m−m′−2s(
sin(

θ

2
)

)m′−m+2s

(12)
The inverse of a group operation is

[R(φ, θ, ψ)]−1 = R(−ψ,−θ,−φ) (13)

The matrix inverse of a unitary representation Eq.(10) is its hermitian ad-
joint, or complex conjugate transpose[

Dj(−ψ,−θ,−φ)
]
nm

=
[
Dj(φ, θ, ψ)

]∗
mn

(14)
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The simplest faithful matrix representation, with j = 1
2
, is[

e−iφ/2 cos θ/2e−iψ/2 −e−iφ/2 sin θ/2e+iψ/2

e+iφ/2 sin θ/2e−iψ/2 e+iφ/2 cos θ/2e+iψ/2

]
(15)

3.2 Orthogonality and Completeness

The Wigner matrix elements Eq. (10) form an orthogonal and complete set
of functions defined on the continuous space that parameterizes this group.
The parameters are (0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π) and the measure
(volume element) on this space is dV = dφ|d cos(θ)|dψ = sin(θ)dθdφdψ.
Under the identification motivated by the clean lines of the Dirac notation,
the Wigner functions are defined as follows

〈φ, θ, ψ| j
m′m

〉 =

√
2j + 1

8π2
Dj
m′m(φ, θ, ψ) = 〈 j

m′m
|φ, θ, ψ〉∗ (16)

The orthogonality and completeness relations can be expressed

〈 j′

n′m′
|φ, θ, ψ〉〈φ, θ, ψ| j

nm
〉 = 〈 j′

n′m′
| j
nm
〉 Orthogonality

〈φ′, θ′, ψ′| j
m′m

〉〈 j
m′m

|φ, θ, ψ〉 = 〈φ′, θ′, ψ′|φ, θ, ψ〉 Completeness

(17)
On the left hand side of these equations an integral over the continuous
variables (φ, θ, ψ) is assumed using the measure dV in the first equation and
a sum over all allowed discrete indices (j,m′,m) is assumed in the second
line. On the right hand side the inner products of the discrete and continuous
bras and kets are

〈 j′

n′m′
| j
nm
〉 = δj

′jδn′m′δnm

〈φ′, θ′, ψ′|φ, θ, ψ〉 = δ(φ′ − φ)δ(cos θ′ − cos θ)δ(ψ′ − ψ)
(18)

3.3 Spherical Harmonics and Legendre Polynomials

The subset of Wigner functions Eq. (16) that do not depend on the rotation
angle ψ have m = 0, and therefore j = l, an integer. These functions are
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proportional to the spherical harmonics, and in fact

〈θ, φ| l
m′
〉 = Y l

m′(θ, φ) =

√
2l + 1

4π
Dl
m′,0(φ, θ,−)∗ (19)

These functions inherit their orthonormality and completeness properties
on the surface of the two-dimensional sphere (θ, φ) from the correspond-
ing properties of their parents, the Wigner functions, on the original three-
dimensional parameter space.

The subset of these functions that do not depend on the rotation angle φ
have m′ = 0, and are Legendre polynomials:

Dl
00(−, θ,−) = Pl(cos θ) (20)

They are orthogonal and complete on the meridian (0 ≤ θ ≤ π) Their nor-
malization is obtained from the Wigner functions:∫ π

0

Pl′(cos θ)Pl(cos θ) sin θdθ =
2

2l + 1
δl′l (21)

3.4 Addition Theorems

The product of two group operations is a group operation: R(a)R(b) = R(c)
where, for example, a = (φ1, θ1, ψ1), R(a) is given in Eq. (7), and similarly
for b, and the three variables of c = c(a,b) are functions of the parame-
ters in the triplets a and b. The explicit expressions for (Φ,Θ,Ψ) (e.g.,
Θ(φ1θ1ψ1;φ2θ2ψ2)), can be computed in any faithful matrix representation,
for example the 2× 2 matrix representation given in Eq. (15).

In any matrix representation

Dj
m′m (R(a)R(b))

↙ ↘
Dj
m′k (R(a))Dj

km (R(b)) = Dj
m′m (R(c))

‖ ‖

〈a| j
m′k

〉〈b| j
km
〉 =

√
2j + 1

8π2
〈c| j

m′m
〉

(22)

When the specific angles described by a,b, c are introduced in this expres-
sion, the resulting addition theorem in the group manifold is obtained for
the Wigner matrix elements.
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Most of these addition formulas are of little use. However, by setting
m′ = m = 0 we find

Dl
0k(−,−θ1,−φ1)Dl

k0(φ2, θ2,−) = Dl
00(−,Θ,−) (23)

where

cos Θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2 − φ1) (24)

By using the relation between the matrix elements Dj
m0 and the spherical

harmonics (c.f., Eq. (19)) and the Legendre polynomials (c.f., Eq. (20)) we
find the sometimes-useful result

Pl(cos Θ) =
4π

2l + 1

+l∑
m=−l

Y l
m(θ1, φ1)Y l∗

m (θ2, φ2) (25)

3.5 Generating Functions

There are many generating functions. We can compute one by investigating
the operator describing rotations about the y-axis in a mixed basis

〈θ, φ|e−iβJy | l
−l 〉

↙ ↘

〈θ, φ|e−iβJy |θ′, φ′〉〈θ′, φ′| l
−l 〉 = 〈θ, φ| l

m′
〉〈 l
m′
|e−iβJy | l

−l 〉

(26)
The transformation on the left can be computed using the 3 × 3 matrix

representation for the rotation and the coordinates x = sin θ cosφ, y =
sin θ sinφ, z = cos θ so that

[
x y z

]
=
[
x′ y′ z′

]  cos β 0 − sin β
0 1 0

sin β 0 cos β

 (27)

Solving for θ′, φ′ in terms of θ, φ, we find

sin θ′e−iφ
′
= sin θe−iφ − sin β cos θ + (cos β − 1) sin θ cosφ (28)
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Using the definition of Y l
−l(θ, φ) =

√
(2l+1)!!
4π(2l)!!

(
sin θe−iφ

)l
, where n!! = n(n −

2)(n− 4) · · · 2 or 1, we find on the left hand side of Eq. (26)

LHS(26) =

√
(2l + 1)!!

4π(2l)!!

(
sin θe−iφ − sin β cos θ + (cos β − 1) sin θ cosφ

)l
(29)

The right hand side of Eq. (26) can be treated by constructing a disen-
tangling relation:

e−iβJy = eα+L+eαzLzeα−L− (30)

Analytyic expressions for the three variables α∗ are determined by carrying
out this calculation in any faithful matrix representation. The 2 × 2 ma-
trix representation of Eq. (15) is the smallest such representation, so the
calculations in this representation are the simplest. By setting

[
cos β/2 − sin β/2
sin β/2 cos β/2

]
=

[
1 α+

0 1

] [
eαz/2 0

0 e−αz/2

] [
1 0
α− 1

]
(31)

we find

α− = tan β/2 α+ = − tan β/2 e−αz/2 = cos β/2 (32)

When this operator is applied to the state | l
−l 〉 we find

e−iβJy | l
−l 〉 = eα+L+eαzLzeα−L−| l

−l 〉

= eα+L+eαzLz | l
−l 〉

= eα+L+| l
−l 〉e

(−l)αz

=
∑

k
(α+L+)k

k!
| l
−l 〉e

2l(−αz/2)

=
√

(2l)!
(2l−k)!k!

| l
−l + k

〉(− tan β/2)k(cos β/2)2l

(33)
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As a result, the right hand side of Eq. (26) is

RHS(26) =

√
(2l)!

(l +m)!(l −m)!
(− sin β/2)l+m(cos β/2)l−mY l

m(θ, φ) (34)

The desired generating function is obtained by equating Eq. (29) with
Eq. (34).

3.6 Differential Operators

Differential operators can be introduced that act on the three variables in

the functions 〈φ, θ, ψ| j
nm
〉. In fact, two sets of such operators can be in-

troduced: one acts on the first set (j,m′) of discrete indices while the second
acts on the second set (j,m) of discrete indices. It is convenient to describe
these operators in a mixed basis set:

〈φ, θ, ψ|Jz|
j

m′m
〉∗

↙ ↘

〈φ, θ, ψ|1
i
∂
∂φ
|φ′, θ′, ψ′〉∗〈φ′, θ′, ψ′| j

m′m
〉∗ = 〈φ, θ, ψ| j

n′n
〉∗〈 j

n′n
| j
m′m

〉∗m′δn′m′δnm
(35)

The expression for Jz in the continuous basis on the left in the bottom line
is to be interpreted as

〈φ, θ, ψ|1
i

∂

∂φ
|φ′, θ′, ψ′〉 =

1

i

∂

∂φ
δ(φ′ − φ)δ(cos θ′ − cos θ)δ(ψ′ − ψ) (36)

Operators J± = Jx ± iJy can be defined similarly. In the continuous
representation they have the differential form

J± → ie±iφ
(

cot θ
∂

∂φ
∓ i ∂

∂θ
− 1

sin θ

∂

∂ψ

)
(37)

On the right hand side these shift operators act only on the first index:

J±〈φ, θ, ψ|
j
mn
〉∗ = 〈φ, θ, ψ| j

m′n′
〉∗
√

(j ∓m)(j ±m′)δm′,m±1δn′n (38)
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A second dual set of operators Ki can be introduced that act only on the
second index. In continuous coordinates their differential representation is

Kz = 1
i
∂
∂ψ

K± = ie∓iψ
(

1
sin θ

∂
∂φ
∓ i ∂

∂θ
− cot θ ∂

∂ψ

) (39)

The action of these operators on the Wigner functions is

Kz〈φ, θ, ψ|
j
mn
〉∗ = 〈φ, θ, ψ| j

m′n′
〉∗nδm′mδn′n

K±〈φ, θ, ψ|
j
mn
〉∗ = 〈φ, θ, ψ| j

m′n′
〉∗δm′,m

√
(j ± n)(j ∓ n′)δn′n∓1

(40)

The duality between the operators J and K is summarized in part by: J+

shifts the first discrete index up by one while K+ shifts the second index
down by one.

The two sets of operators Ji and Ki have similar but not identical com-
mutation relations

[J1,J2] = iJ3 [K1,K2] = −iK3

[J2,J3] = iJ1 [K2,K3] = −iK1

[J3,J1] = iJ2 [K3,K1] = −iK2

(41)

In addition, the two sets of operators mutually commute: [Ji,Kj] = 0. Fur-
ther, the sum of the squares of the two sets of operators

J 2 = J 2
1 + J 2

2 + J 2
3 K2 = K2

1 +K2
2 +K2

3 (42)

have the same differential representation

J 2 = K2 = − 1

sin2 θ

(
∂2

∂φ2
+

∂2

∂ψ2
− 2 cos θ

∂2

∂φ∂ψ

)
− 1

sin θ

∂

∂θ
sin θ

∂

∂θ
(43)

and have the same eigenvalue j(j + 1) in the 2j + 1 finite-dimensional repre-
sentation [16].
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3.7 Relations: Recursion and Differential

The matrix elements of the shift operators J± can be computed in the mixed
basis in two different ways. In the discrete basis we find

〈φ, θ, ψ|J±|
j
mn
〉∗ = 〈φ, θ, ψ| j

m′n′
〉∗〈 j

m′n′
|J±|

j
mn
〉∗

= 〈φ, θ, ψ| j
m± 1, n

〉∗
√

(j ∓m)(j ±m+ 1)
(44)

using the results of Eq. (38).
A similar calculation in the continuous basis gives

〈φ, θ, ψ|J±|
j
mn
〉∗ = 〈φ, θ, ψ|J±|φ′, θ′, ψ′〉∗〈φ′, θ′, ψ′|

j
mn
〉∗

= e±iφ
(
−m cot θ ± ∂

∂θ
+ n

sin θ

)
〈φ, θ, ψ| j

mn
〉∗

(45)

using the result of Eq. (37) and taking the derivatives with respect to the
rotation angles φ, ψ around the z-axis.

By taking the linear combination of e−iφJ+ + e+iφJ− we find a recursion
relation:

2
n−m cos θ

sin θ
〈φ, θ, ψ| j

mn
〉∗ = 〈φ, θ, ψ| j

m+ 1, n
〉∗e−iφ

√
(j −m)(j +m+ 1)

+〈φ, θ, ψ| j
m− 1, n

〉∗e+iφ
√

(j +m)(j −m+ 1)

(46)
By taking the alternate linear combination e−iφJ+− e+iφJ− we find a differ-
ential relation:

2
∂

∂θ
〈φ, θ, ψ| j

mn
〉∗ = 〈φ, θ, ψ| j

m+ 1, n
〉∗e−iφ

√
(j −m)(j +m+ 1)

−〈φ, θ, ψ| j
m− 1, n

〉∗e+iφ
√

(j +m)(j −m+ 1)

(47)
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The recursion and differential relations for the first index of the Wigner
functions result from computing the matrix elements of the shift operators
J± in the mixed basis in two different ways. Similar results are obtained for
the second index by computing the matrix elements of the shift operators
K±. The results are

2
n cos θ −m

sin θ
〈φ, θ, ψ| j

mn
〉∗ = 〈φ, θ, ψ| j

m, n− 1
〉∗e+iψ

√
(j + n)(j − n+ 1)

+〈φ, θ, ψ| j
m, n+ 1

〉∗e−iψ
√

(j −m)(j + n+ 1)

(48)
and

2
∂

∂θ
〈φ, θ, ψ| j

mn
〉∗ = 〈φ, θ, ψ| j

m, n− 1
〉∗e+iψ

√
(j + n)(j − n+ 1)

−〈φ, θ, ψ| j
m, n+ 1

〉∗e−iψ
√

(j − n)(j + n+ 1)

(49)
These relations have been obtained using the results of Eqs. (39-40).

For the subset of Wigner functions consisting of the spherical harmonics
the shift operators L± are

L± = e±iφ
(
± ∂

∂θ
+ i

cos θ

sin θ

∂

∂φ

)
δ(cos θ′ − cos θ)δ(φ′ − φ) (50)

with L±Y
l
m(θ, φ) = Y l

m±1(θ, φ)
√

(l ∓m)(l ±m+ 1). Then the differential
relation is

2
∂

∂θ
Y l
m(θ, φ) = e−iφ

√
(l −m)(l +m+ 1)Y l

m+1−e+iφ
√

(l +m)(l −m+ 1)Y l
m−1

(51)
and the recursion relation is

−2m cot θY l
m(θ, φ) = e−iφ

√
(l −m)(l +m+ 1)Y l

m+1+e+iφ
√

(l +m)(l −m+ 1)Y l
m−1

(52)
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4 Bessel Functions

4.1 Euclidean Group in the Plane

The Euclidean group in the plane, denoted E2 or ISO(2) (inhomogeneous
(I) rotation group (SO) in the plane (2)), consists of all possible translations
and rotations in the Euclidean plane R2. It has a faithful 3 × 3 matrix
representation given by

g(x, y, θ) =

 cos θ sin θ x
− sin θ cos θ y

0 0 1

 ∈ E2 (53)

with group parameters (x, y) ∈ R2 and θ ∈ S1. The action of this group
operation on a point (a, b) ∈ R2 is given by matrix multiplication on the

column vector
[
a b 1

]t
:

 a′

b′

1

 =

 cos θ sin θ x
− sin θ cos θ y

0 0 1

 a
b
1

 =

 a cos θ + b sin θ + x
−a sin θ + b cos θ + y

1

 (54)

The infinitesimal generators for displacements in the x and y directions (A
and B) and for rotations about the perpendicular direction (C) are

A =

 0 0 1
0 0 0
0 0 0

 B =

 0 0 0
0 0 1
0 0 0

 C =

 0 +1 0
−1 0 0
0 0 0

 (55)

The infinitesimal generators in the space of functions defined on the plane
are

Px =
∂

∂x
Py =

∂

∂y
Lz = x

∂

∂y
− y ∂

∂x
(56)

These operators satisfy the commutation relations

[Lz, Px] = −Py [C,A] = −B
[Lz, Py] = +Px [C,B] = +A
[Px, Py] = 0 [A,B] = 0

(57)

Although neither Px nor Py commute with Lz, P
2
x +P 2

y does:
[
Lz, P

2
x + P 2

y

]
=

0. It has the same value on all basis vectors in an irreducible representation.
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4.2 Shift Operators

It is useful to define linear combinations of the commuting operators as fol-
lows: P± = +iPy ± Px. These linear combinations commute and have the
following commutation relations with the rotation operator

[Lz, P±] = ±iP± (58)

This means that the operators P± can play the role of shift operators.
In the coordinate representation (x = r cosφ, y = r sinφ) these operators

have the following differential expressions

Lz =
1

i

∂

∂φ
P± = e±iφ

(
± ∂

∂r
+
i

r

∂

∂φ

)
(59)

4.3 Basis Functions

It is possible to choose basis functions to be eigenfunctions of Lz with integer
eigenvalues, required by the single-valuedness condition:

Lz|n〉 = n|n〉 or
1

i

∂

∂φ
〈r, φ|n〉 = n〈r, φ|n〉 ⇒ 〈r, φ|n〉 = fn(r)einφ (60)

We show now that the radial functions fn(r) are Bessel functions of integer
order. The shift operators P± shift the basis states to the next higher or lower
basis states: P±|n〉 ' |n± 1〉. We define adjacent basis states as follows:

P+|n〉 = p|n+ 1〉 P−|n〉 = p|n− 1〉 (61)

By applying successively the shift up and down operators, in either order
(since they commute), we find

P+P−〈r, φ|n〉 = P+p〈r, φ|n− 1〉 = p2〈r, φ|n〉 (62)

As a result, p2 is interpreted as the value of the invariant operator P 2
x + P 2

y .
In the coordinate representation the same calculation is

e+iφ

(
+
∂

∂r
+
i

r

∂

∂φ

)
e−iφ

(
− ∂

∂r
+
i

r

∂

∂φ

)
fne

inφ =
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e+iφ

(
+
∂

∂r
+
i

r

∂

∂φ

)(
−f ′n(r)− n

r
fn(r)

)
ei(n−1)φ =

(
−f ′′n(r)− 1

r
f ′n(r) +

n2

r2
fn(r)

)
einφ

(63)
By equating Eq. (63) with Eq. (62) we find a form of the Bessel equation

f ′′n(r) +
1

r
f ′n(r) +

(
p2 − n2

r2

)
fn(r) = 0 (64)

This reduces to the familiar Bessel equation if we rescale the radial variable
r → pr, or equivalently if we choose p2 = 1. To ensure square integrability,
these are the Bessel functions of the first kind that have the Taylor series
expansion

Jn(r) =
∞∑
s=0

(r
2

)n (−r2/4)s

s!(n+ s)!
(65)

and the symmetry J−n(x) = (−1)nJn(x).
All real values of p give representations that are unitary. If p 6= 0 these

representations are irreducible. Representations labeled p and −p are equiv-
alent. We adopt the convention p = −1 to conform to the usual phase
convention of the Bessel functions, so that

〈r, φ|n〉 = Jn(r)einφ (66)

4.4 Differential and Recursion Relations

With this choice of p, (
± d

dr
− n

r

)
Jn(r) = −Jn±1(r) (67)

The mixed basis matrix elements of P+ ± P− are

〈r, φ|P+ ± P−|n〉
↙ ↘

〈r, φ|P+ ± P−|r′, φ′〉〈r′, φ′|n〉 = 〈r, φ|n′〉〈n′|P+ ± P−|n〉
↓ ↓{(

+ d
dr
− n

r

)
±
(
− d
dr
− n

r

)}
Jn(r) = −Jn+1(r)∓ Jn−1(r)

(68)
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The positive sign provides the recursion relation and the negative sign the
differential relation

−P+ − P− ⇒ 2n
r
Jn(r) = Jn−1(r) + Jn+1(r)

+P+ − P− ⇒ 2 d
dr
Jn(r) = Jn−1(r)− Jn+1(r)

(69)

4.5 Generating Function

In the unitary representation with p = −1 the rotation operator is diagonal:
〈n′|eiLzφ|n〉 = einφδn′n. The shift operators are more complicated:

〈n′|exPx+yPy |n〉 = 〈n′|eaP++bP− |n〉 a = (r/2)e−iφ, b = (−r/2)e+iφ (70)

The matrix representatives of the shift operators P± have nonzero values −1
only on the diagonal above (for P+) or below (for P−) the main diagonal.
Further, both matrices are cyclic: each row is the same as any other, centered
on the diagonal. As a result eaP+ is upper triangular and cyclic, ebP− is lower
triangular and cyclic, and their product is cyclic and has matrix elements

(
ebP−eaP+

)
p+n,p

=
∑
s=0

(−b)n(ba)s

s!(n+ s)!

(a,b)→(r,φ)−→ einφ
∑
s=0

(r
2

)n (−r2/4)s

s!(s+ n)!
= einφJn(r)

(71)
This holds for n negative by the index symmetry expressed below Eq. (65).
In summary, the matrix elements of a translation are

〈n′|exPx+yPy |n〉 = ei(n
′−n)φJn′−n(r) (72)

In this respect, with z = eiφ the function e(r/2)(z−z−1) can be considered as the
generating function for the matrix elements in any row of the representation
of the translation operator:

e(r/2)(z−z−1) =
∑
n

znJn(r) (73)
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4.6 Addition Theorem

The addition theorems arise from expressions such as

〈n′|ex1Px+y1Py ex2Px+y2Py |n〉 = 〈n′|e(x1+x2)Px+(y1+y2)Py |n〉∑
p〈n′|ex1Px+y1Py |p〉〈p|ex2Px+y2Py |n〉 = ei(n

′−n)ΦJn′−n(R)∑
p e

i(n′−p)φ1Jn′−p(r1)ei(p−n)φ2Jp−n(r2) = ei(n
′−n)ΦJn′−n(R)

(74)

To be explicit

r1 cosφ1 + r2 cosφ2 = R cos Φ
r1 sinφ1 + r2 sinφ2 = R sin Φ

(75)

5 Heisenberg Groups: H4 and H3

The Heisenberg algebra h4 is spanned by the number, creation, annihila-
tion, and identity operators n̂, a†, a, I. The Heisenberg group H4 is obtained
by exponentiation these operators. These operators satisfy the well-known
commutation relations[

n̂, a†
]

= +a† [n̂, a] = −a
[
a, a†

]
= I [I, ∗] = 0 (76)

The Heisenberg algebra h3 is the subagebra spanned by the creation, an-
nihilation, and identity operators, and H3 is the corresponding Heisenberg
Group.

The creation and annihilation operators are obtained by “factoring” the
harmonic oscillator hamiltonian into a pair of linear factors in the spirit
of Dirac’s factorization of the Klein-Gordan equation into a pair of linear
factors:

1

2

(
− d2

dx2
+ x2

)
' 1√

2

(
x+

d

dx

)
× 1√

2

(
x− d

dx

)
(77)

This product does not exactly equal the hamiltonian (with ~ = m = k =
1) on the left. When the linear factors are multiplied in the reverse order
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and added to the product above and the result is averaged, the hamiltonian
results. The following identifications are standard:

a =
1√
2

(x+D) a† =
1√
2

(x−D) (78)

with D ≡ d
dx

.

5.1 Faithful 3× 3 Matrix Representation

The number, creation, annihilation, and identity operators that span h4 can
be mapped into a faithful 3× 3 matrix representation as follows:

ηn̂+ ra† + la+ δI →

 0 l δ
0 η r
0 0 0

 (79)

This representation is not hermitian, so is not directly applicable to problems
of a quantum mechanical nature. In addition, the identity operator is not
a multiple of the unit matrix. This is not a problem: the only important
property is that the matrix representative of the identity matrix commutes
with all other operators in this algebra.

The virtue of this matrix representation is that it is easily exponentiated

EXP

 0 l δ
0 η r
0 0 0

 =

 1 l e
η−1
η

δ + lr e
η−1−η
η2

0 eη r e
η−1
η

0 0 1

 η→0−→

 1 l δ + lr
2

0 1 r
0 0 1


(80)

Simple matrix multiplication using the exponentials above lead to the fol-
lowing useful distentangling theorems:

era
†+la = era

†
erl/2ela = elae−rl/2era

†
(81)

The operator on the left is unitary provided (ra† + la)† = −(ra† + la), or
l = −r∗.

5.2 Discrete Basis

It is useful to introduce a discrete set of basis states |n〉, n = 0, 1, 2, · · · . The
matrix elements of the four operators in this orthonormal basis 〈n′|n〉 = δn′,n
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are

〈n′|n̂|n〉 = (n+ 1
2
)δn′,n 〈n′|a†|n〉 =

√
n′δn′,n+1

〈n′|I|n〉 = 1δn′,n 〈n′|a|n〉 =
√
nδn′,n−1

(82)

As with the set of unitary representations of the Euclidean group E(2) de-
scribed by the real number p, there are many inequivalent unitary represen-
tations of the Heisenberg group H4 described by different values of a real
number. We have chosen the representation that occurs in most physical
applications.

The basis state |n〉 can be obtained by the action of the creation operator
on the “ground state” |0〉 by repeated application:

|n〉 =
(a†)n√
n!
|0〉 (83)

The operator a annihilates the ground state: a|0〉 = 0.

5.3 Harmonic Oscillator Wavefunctions

The matrix elements of the creation and annihilation operators in a mixed
basis provide the harmonic oscillator eigenfunctions. The ground state is
determined from

〈x|a|0〉
↙ ↘

〈x|a|x′〉〈x′|0〉 = 〈x|n′〉〈n′|a|0〉
↓ ↓

1√
2

(
x+ d

dx

)
〈x|0〉 = 0

(84)

This linear ordinary differential equation has a unique solution (up to sign)
which, when normalized to unity, is

ψ0(x) = 〈x|0〉 =
1
4
√
π
e−x

2/2 (85)
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The functions 〈x|n〉 are computed in a straightforward way:

〈x|n〉 = 〈x| (a
†)n√
n!
|0〉

↙ ↘
〈x|n′〉〈n′| (a

†)n√
n!
|0〉 = 〈x| (a

†)n√
n!
|x′〉〈x′|0〉

〈x|n〉 = (x−D)n√
2nn!
√
π
e−x

2/2

ψn(x) = Hn(x)e−x
2/2√

2nn!
√
π

(86)

Here ψn(x) are the standard normalized harmonic oscillator eigenfunctions
and Hn(x) the standard Hermite polynomials.

5.4 Differential and Recursion Relations

The operators a ± a† can be computed in a mixed basis in the usual way.
The two sign choices give the recursion and differential relations:

〈x|a± a†|n〉
↙ ↘

〈x|a± a†|x′〉〈x′|n〉 = 〈x|n′〉〈n′|a± a†|n〉

〈x|n− 1〉
√
n± 〈x|n+ 1〉

√
n+ 1

(87)

Choice of the positive sign gives the recursion relation and the negative sign
gives the differential relation:

a+ a† →
√

2xψn(x) =
√
nψn−1(x) +

√
n+ 1ψn+1(x)

a− a† →
√

2 d
dx
ψn(x) =

√
nψn−1(x)−

√
n+ 1ψn+1(x)

(88)

5.5 Generating Function

A generating function is obtained by constructing two equivalent represen-
tations for the group operator et

√
2(a+a†) using disentangling theorems Eq.

(81)

et
√

2(a†+a) = et
√

2a†et
√

2aet
2I = e2tx (89)
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and then applying these expressions to the ground state 〈x|0〉:

〈x|et
√

2(a†+a)|0〉

〈x|et
√

2(a†+a)|x′〉〈x|0〉 = 〈x|n〉〈n|et
√

2(a†+a)|0〉

e2tx〈x|0〉 = 〈x|n〉〈n|et
√

2a†e
√

2taet
2|0〉

e2txe−x
2/2/ 4
√
π = 〈x| (

√
2t)n√
n!
|n〉et2

e2tx−t2 =
∑

n=0
tnHn(x)

n!

(90)

5.6 Addition Formulas

Addition theorems are most easily constructed from the generating functions.

e2tx1−t2e2tx2−t2 = e2t(x1+x2)−2t2 = e2s((x1+x2)/
√

2)−s2∑
p

∑
q

tpHp(x1)

p!

tqHq(x2)

q!
=

∑
r

(t
√

2)rHr((x1 + x2)/
√

2)

r!
(91)

where s = t
√

2. By equating equal powers of the parameter t on both sides
we find

Hr(
(x1 + x2)√

2
) = 2−r/2

∑
s

r!

s!(r − s)!
Hs(x1)Hr−s(x2) (92)

5.7 Generating Function for Unitary Matrix Elements

A simple generating function for discrete basis vectors can be constructed by
applying a unitary transformation U(α) = eαa

†−α∗a to the ground state

eαa
†−α∗a|0〉 = eαa

†
e−αα

∗/2e−α
∗a|0〉 = eαa

†|0〉e−α∗α/2 =
∑
n

αn√
n!
|n〉e−α∗α/2

(93)
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The generating function for the dual states 〈n| is also immediate(
eαa

†−α∗a|0〉
)†

= 〈0|e−(αa†−α∗a) =
∑
n

〈n|(α
∗)n√
n!
e−α

∗α/2 (94)

A generating function for the matrix elements of U(β) = eβa
†−β∗a is obtained

by computing the ground state expectation value

〈0|U(−α)U(β)U(α)|0〉
↙ ↘∑

p

∑
q

(α∗)p√
p!
〈p|U(β)|q〉 (α)q√

q!
e−α

∗α = eα
∗β−αβ∗−β∗β/2

(95)
From this it is easy to compute the desired matrix element as an infinite sum:

〈p|U(β)|q〉 =

min(p,q)∑
r=0

√
p!
√
q!

r!

(β)p−r(−β∗)q−r

(p− r)!(q − r)!
e−β

∗β/2 (96)

〈p|U(β)|q〉 =
(β)p(−β∗)q√

p!
√
q!

e−β
∗β/2

2F0(−p,−q;−1/β∗β) (97)

In this last expression 2F0 is a function of hypergeometric type.

6 Discussion and History

Special functions have had a long history on the Mathematics side of the
Mathematical Physics domain. They entered the Physics side in the form of
solutions to (usually) second order ordinary differential equations of interest
to natural philosophers. This is evident in their canonical names: most are
identified with eighteenth and nineteenth century scientists. The formulation
of an encompassing theory of special functions has had many incarnations.

A “modern” era of special functions can be associated with the devel-
opment of modern quantum mechanics in its Wave Mechanics formulation
by Schrödinger in 1926. In the early stages of the development of this the-
ory almost all the special functions were encountered. Inspired by Dirac’s
factorization of the Klein-Gordon equation into two linear factors [17], non-
commuting if the electromagnetic field is present, Schrödinger wondered if
factorization of second order linear ordinary differential equations was gen-
erally possible. He showed that it was in 1940-1941 [18, 19, 20]. This set the
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stage for Infeld and Hull to formulate the theory of special functions in terms
of a limited number of types of factorization (types A through F) [21]. All
factors in each type had a similar structure: a(x) d

dx
+b(x). It didn’t take long

to appreciate that the infinitesimal generators of Lie groups, acting on suit-
able spaces, have this same structure. In 1964 Willard Miller, Jr. published
a short AMS study setting out this connection in one way [10]. In 1965 N.
Ja. Vilenkin published his formulation, somewhat different than Miller’s, in
a Russian text. Concurrently, Eugene Wigner had been teaching a course on
this subject at Princeton University. After these beginnings, 1968 was a ban-
ner year for this subject. In that year Miller published the expansion of his
43 page Memoir in full length book form [11]; Wigner’s lecture notes were
transcribed and published with Wigner’s permission by Talman [12]; and
Vilenkin’s book was translated and published in English [13]. Since then the
connection between Lie groups and the classical functions of mathematical
physics has been known to advanced-level researchers.

We hope that this short formulation of material that is basically well-
known at advanced levels will bring an understanding of this connection to
the undergraduate level.
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