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Robert Gilmore
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Tampa, Florida 33620
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ABSTRACT: Coherent states are obtained by applying a -dynamical unitary.

transformation to an extréemal state in an invariant subspace
of a quantum mechanical hamiltonian. The pro:pe.lﬁtie's‘of co-
herent statés are completely characterized mathematically.
In addition, we prove the folloWi‘néivery useful theorem: A
physical system inifially in a doherent state, or in. particular :
in its ground state, will evolve into a coherent state. We give
variots examples of the utility of coherent’ st’a’:es.

1. INTRODUCTION

A large number of quantum mechanical models have the f ollow.ing
properties: ' _ '
) The'-gt-és's energy‘levél structure is defiﬁed'by'a static hamiltonian;
2) Perturbations can be written as a linear superpos.ition of shift. oper-

" ators;

3) The static hamlltonlan and the shift operators close- under commutauon[ '
- and form a finite dimensional Lie algebra. '
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We define coherent states with respect to a Lie group G, a stability
subgroup H, and an m'educzble representation "M(G), as the state obtained
by applying the gperator- r* (G/H)toan extremal state (e.g., the ground
state of the unperturbed hamiltonian) in the invariant subspace of G charac-
terized by the quantum numbers A.

Such coherent states have all the usual properties of the field co-
herent states. _ Baker-Campbell-Hausdorff formulas, depending only on G
and not on [~ , can be constructed and used to simplify calculations.
The coherent states themselves are non-orthogonal and over—complete

‘within any.invariant subspace. Under an arb.itrary perturbation, a system
which is initially in a coherent state, or in particular in its ground state,
will evolve .into a coherent state.

These statements are valid whenever the dynamical transformation
group G is compact, or if G is non-ompact, whenever [~ is semibounded.

In §II we describe the fotces motivating the search for generalization

~ of the ccherent state concept. This is directly related to the extreme useful-
ness and the widespread applicability of the field coherent states. The
. properties of these states are reviewed .in §I1II. These mathematical mecha-
nisms are applied, .in §IV, to the construction of the atomic coherent states
for an ensemble of 2-level atoms. The extreme similarity between the field
coherent states described in §III, and the atomic coherent states described
in §IV, is made manifest by a group contraction procedure in §V. In this
ptocess the Bloch sphete (describing atomic coherent states) is contracted
to the phase plane of the harmonic oscillator (describing field coherent states)
In §VI we illustrate the utility of the atomic coherent states by .indicating
- how they have been used to solve non-trivial problems.

“In §VII we return to a general discussion of the properties of cdherent
states, and .in particular we prove the theorem stated in the abstract. Finally,
we apply this formalism .in §VIII to obtain a swift solution to a particular
model of a superfluid system.

\ II. BACKGROUND AND MOTIVATION

What are now called the. fxeld coherent states were fu:st dzscussed by
Schrodinger?! in coanectign with the semiclassical limit of the quantum mecha-
nical barmonic oscillator. They were later used by Bloch and Nordsieck? to
treat the “infrared catastrophe.” The properties of these states were then

formalized by Schw.inger.? Fmally, Glauber*  introduced these states under '
‘theé name “coherent states,” into Quantum Optics.
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Because of the intimate relationship between coherent states on the
one hand, and the output of a laser cavity on the other, field coherent states
have maintained a central position in the development of Quantum Optics
since their introduction by Glauber in 1963.

, Quantum Optics.involves the description of the interaction between N
atoms and an electromagnetic field confined to a cavity of finite volume. A
suitable model hamiltonian for such a system .is

= i3
H = f by, 4l a, + AE,-E}SS(J’) +
. ) « 1
+ E?gkaks-l-(j) exp (k- xj)‘+ _gkaks-(j) exp(- k" x].) . (2.J)

In this expression, az and @, are the Bose creation and annihilation oper-
ators for photons in the field mode &, and Ss(i) y st(j) are.the angular momentum
operators describing the atom located at position x, as a 2-level system.
Equation (2.1) has not yet been solved in general. In particular, the

operators appearing .in this equation do not close under commutation, and as
a result do not form a finite-dimensional Lie algebra. As a result the pro-
cedures described in the introduction are not directly applicable to this
hamiltonian. ' -

' If the *atomic part” of the system described in(2.1) behaves classically,
so that the operators Ss(' » S, can be replaeed by c-number driving fields,

: . 3(7) * “¥j) . S

then the resulting hamiltonian can be solved explicitly and exactly.* 5 If
the system is originally in a vacuum state of the electromagnetic field, then
it will evolve .into a field coherent state. We conclude from the quantum -

- classical hamiltonian (2. 1) that a classical current, when applied to a vacuum
state of the electromagnetic field, will produce a coherent state of the
electromagnetic field, and that such a coherent state is in some sense the

- closest possible quantum analog of a classical electromagnetic field.

- It is instructive to ask whether these results can be dualized. That
is: is it possible to replace the electromagnetic field operators appearing in -

(2.1) by c-number driving fields and then solve the resulting hamiitonian? The

resulting hamiltonian then describes the interaction between a classical electro- <

magaetic field and an ensemble of N identical 2-level atoms. ‘This hamiltonian
can be solved exactly .in three cases of extreme physical interest :
i) point laser.(cavity length <<)\);

ii) single mode traveling wave laser; ’
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iif) traveling'electromagnetic— wave 'in an aplifying or absorbing medium.

~In any of these cases, if the dtomic systemis originally in its ground state,
it will evolve into a coherent atomic state. - :
Although the hamiltonian(2.1) cannot be solved exactly, the semi-
classical hamiltonians arising from (2.1) can be solved exactly. The semi-
classical hamiltonians are obtained by assuming either that the atomic system
is classical and the field’-'sys:em is quantum mechanical, or that the field
system is classical and the atomic system is quantized. In either case, if
the quantum mechanical system is originally in a coherent state, or in par-
ticular in its ground state, then it will evolve .intoa coherent state. Inboth
instances the coherent state is the closest possible quantum analog of the
comesponding classical state. These remarks are summarized in Fig. 1.

Matter Field '
| Classical Classical . " Classical
States Current Field

L |

f

Quantum , - ‘Coherent 7 Coherent " -
States : ~ Atomic State - .Field State

Fig. 1. Interacting atomic and field systems may be considered as dual
' to each other, If either quantum system is driven by its dual
- classical counterpart, a coherent state results (diagonal arrows),
The coherent state is the closest possible quantum analog of the
- corresponding classical state {vertical arrows). :

~ II. REVIEW OF FIELD COHERENT STATES

Ve summarize here the properties of coherent states for a single mode
o the electromagnetic field.4-7 ‘ '
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1. Model Hamiltonian: a model hamiltonian describing the mteracuon of a
classmai current with the electromagnetic field is

H = :HO + :Hpen
:Ho =.ﬁ'a{aﬂz
T %
Hoew =MD +N (2. - (3.1)

Here @ @ is the single mode photon number operator,-and aT and a, are the «
photon creation and annihilation operators for a single mode, respdeé

2. ‘Commutation Relations: the hamiltonian described in (3.1) is a linear

- superposition of operators that close under commutation. These operators
obey the commutation relations

[n,d] =+d N P 5
[n,a) =-a [l =0
[a,d'] = +1  la] =0 . . (3.2)

The four operators # —aTa, aT @, and I span the Lie algebra b4 , called the.

bharmonic oscillator algebra.

3. Dlagonal States the eigenstates of Ji contain a flxed number of photons
in each field mode

H |n> =pwn|n>. - (33a)

The normahzed e1genstates can be obtained by applymg the creation oper-
.-ator to the ground state ] 0> 7 successive times:

|n> (a)(n')'2| (3.3

These’ d}a'gqnﬁl field spét e s are c_gi_l‘ed “ Foc k" statjés 8 |
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4. Ground State: the ground state is defined uniquely, up to a complex phase
factor of modulus unity, as the eigenstate of 1{0 with lowest energy eigen-
value:

X, lo> =E_. |0>

E. =0. (B4

It can equivalently bé defined as the state annihilated by the shift-down
operator @:

Tl‘a|0>=0 or expal0>=|0> (3.4b)

‘5. Unitary Translation Operator: under the influence of a classical driving
current, the ground state | 0> will evolve under a unitary operator U(a) ¢

Ula) = exp (a,a'.r ~ata)
U(a) |o> = la> . | ’ 3.9

In general, a(¢) is a time-dependent complex number, and a(#) is related to
A(?) through the equations of motion which are derivable from (3.1).

'The transformation U(a) is a unitary representation (c. x oo matrix) of
the coset representatives® of H,/U(1) @ U(1), which is isomo.phic with the
phase plane of the harmonic oscillator. The states la.>' are called “coherent”

stajes and for the particular case of the electromagnetic field they are called
“Glauber” states.* 5 7:9"

6. Coherent State Eigenvalue Equation: the coherent states obey an eigen -
value equation easily derivable from (3.4b):

{U@a ™ (@Y U@]0> =(a-a)|a> =0 . (3.6)

7. Baker-Campbell-Hausdorff Formulas: these formulas allow for rear-
rangements in the ordering of exponential operator products. They are
. exturémely useful for dealing with the properties of coherent states. A useful
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‘BCH formula for the Lie group H, is

exp (aaT +f8a) = exp (- %af) exp (Ba) exp (a_.aT)

= exp (% aB) exp.(ad' ) exp (Ba) . (3.7

8. Expansion of Coherent States: the coherent states can be expanded in
terms of the eigenstates (3.3b) of ﬂo , since these form a complete set of
orthonormal states. This expansion is facilitated by the BCH relation (3.7):

|a> = U(a)l 0> = exp(-'/za*a) exp (a.aT) exp (- a."a)| 0>
_ Lo# g TP, -t
=exp(-4a a) 2 (aa' ) (! |0>
0
PN PR +
= exp (-%d’a) T(a) (#1) *[n> . (3.8)
) i

9. Non-orthogonality: the field coherent states are non-orthogonal:‘.
<a|B> =<o|v' () v 0>
= exp(a’B - 4(d’a +ﬁ*ﬁ)) (3.9a)
2 2 | :
|<a|g>] =exp(-la-p]) . - (3.9b)

10. Over~completeness: the coherent states are overcomplete. The reso-
lution of the identity operator in terms of coherent states is not unique. A
useful resolution is ' '

 fla> (Pasmy<al =1 =3 |n><n]| . | (3.10)
. | _

3

'11. Uncertainty Relations: the creation and annihilation operators are not
hermitian, but their “real” and “imaginary” parts are:



150 ' : Gilmore.

g = (ata )2
[p3q] = -1
p=(a-al)/ivV2 | (3.11a)

- The non-commuting hermitian operators p,q havé minimum uncertainty within
a coherent state:

Lp) (Dg) =)
2 | 2
(Dg) =<a|(q—<q>)'la>
<q>‘ = <a|q’a,> - (3.11b)

12. Generating Functions: in correlation experiments it .is often necessary
to compare correlation data with matrix elements of the form:

’ T 7 /] .
normal form <a ] {a') (@) l a>
. 7 'I' m
anti-normal form <a ] (a) {a ) I'a>
o n_+m :
symmetrized form <a.[S {(a) (a") }Ia> . (3.12a)

Such matrix elements are most simply obtained from a generating function:

<al(a) (@) |a> = (3/3y)"(3/38)" <a| exp (ya) exp (8a') | 0> | -
‘ o

(3.12b)

The generating function is simple to compute:
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<a|exp(ya) exp(8ah)|a>

= exp(- ' a)<0 | exp(a*a) exp(ya) éxp(SaT) exp(a.at)-l 0>

= exp(- a*a) <0] exp ((a+ &) a'Yexp ((* + y)(a+ Sexp ((&*+y)a)| 0>
= exp (- a*a) exp((a+8)(d"+7) . | (3.12¢)

Other generating functions can be obtained as simply.

IV. ATOMIC COHERENT STATES
We now “dualize” the treatment given in't_:he preceeding section.

1. Model Hamiltonian: if the electromagnetic field operators appeanng An
(2.1) are replaced by their (macroscopic) classical average values using the

analog of a mean-field approximation scheme, the hamiltonian simplifies
greatly. Inthe case of a single mode traveling wave laser, it is

T
pert
\N ’
H, =AEj§1S3(i)
N _ . N

: = : ) . * . .
ﬁpeﬂ ’y(t)jz.lsﬂj)exp(zk xj)f‘}/ (t)jEIS_(j)exp(—z_k xj) .

(4.1)

2. Commutation Relations: the single-atom operators are kinematically inde-
pendent and obey the usual S$U(2) commutation relations:

By Seghy) = SepByt o e

The many-atom operators
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_ N
Iy = 2 5

j=1

N
J,= 2 St (7) exp (ik 'x].)

i=1

N

- e y— 7t
J_= jzlsﬂ(i) exp (- ik x].) —]+

obey the usual SU(2) commutation relations

. 11 =1, l7,,51=0
b1} == (1, J,1 =0
J_. 1)=-7, [, J,]=0 . (4.2)

- The operator J, is a multiple of the identity within any irreducible repre-
sentation,

3. Diagonal States: the eigenstates of .'Ho are essentially angular mome ntum
" eigenstates

W10y = sEm|i)y .  dm)

The normalized eigenstates can be obtained by applying the shift-up oper-

P ' i . . ) .
ator to the ground state I !'> - (j + m) times

IQ - ( 2
) jim

These diagonal. states are called “Dicke” states.

(J) ' o . ,
G+m)l I-f>3 ' - (430

)-"z L Jtm

7,10
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4. Ground State: the ground state is defined uniquely, up to a2 complex

phase factor of modulus unity, as the eigenstate of ‘1{0 with lowest energy
eigenvalue:

¥ | _;) - B | _;) | (4.4a)
Emin = -jOE

It can equivalently be def'ined as the state annihilated by the shift-down
operator J_:

f-‘-ﬁ) =0 o exp(f_)l_;:) =|_;>' (4.4b)

5. Unitary Transformation 0peratbr under the mfluence ofa class1cal dnvmg

field, the ground state ! ) will evolve under a umtary operator7 ® U(6):

U0 = exp (L], - ']

L = %8 exp (~ich)
woally -1y s

In general {(¢) isa time-dependent complex number, and {(2) is related to

~ ¥(#) through the equations of motion which are derivable from (4.1).

The transformation U(6¢) is a unitary representation (2 +1x2j+1
- matrix) of the coset representatives of U(2)/U(1) & U(1), which is isomorphic” ®
with the sphere S°. This sphere is often called”'? the “Bloch sphere” since
it was introduced by Bloch™ for the discussion of the nuclear induction ex-

periment.? The states ] ’¢>- are called “coherent” states, and for the

particular case of two-level atoms, they are called “Bloch” states.” 911
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6. 'Coherent State Eigenvalue Equation: the coherent atomic states obey
several “ecigenvalue equations” easily derivable from the eigenvalue equations

defining the ground state | 7y .
: -7

i U
{U(6) " U™ (6)} U(Gc;b)]_i) 1(1_+-1>|9’¢,
' '-1 L ; - . i\
wep v e ues | 7y = i 11)
{U(6¢) J_U™ (6} U(qu)]_;) = 0 . (4.6)

Th_es_e equations do not have the classic structure of eigenvalue equations
since the operator {U(8¢) @ U1(9¢)} on the lek hand side of each equation

depends explicitly on the parameters (6¢) serving to label the coherent
(eigen) states. '

7. Bake;-Campbell'-Hausdorff Formulas: a large number of BCH formulas
can be derived for the Lie group SU(2). These have been greated .in detail

"elsewhere.”" 1 ‘Some particularly useful BCH fomulas for current purposes
- are given in (4.7): ' ' |

exp({J, - f]_) = exp(7],) exp(ln (1+7*7) J,) exp(- 7] )
= exp(-,--"f‘*]__)'exp(‘_:'ln(l-{. 7" 7) 13) exP(‘T]-l-) N (4.7)

where

{=exp(- iqb')-lfz'g

7= exp{-ip) tan 56 .

. 8. Expansion of Cobherent States: - the coherent states can be ex‘parided in
. terms of the eigenstates (4.3b) of No’ since these form a complete set of
orthanormal states. This expansion is facilitated by the B.CH relation

(4.7):
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1 2,) =venl_ ;) = exp(7J)) exp (In (1477 I exp(- 770 L 7)

= (1 +T*7')'j”§=30('r]+)n(n!)'ll i ;)

Yoo . i+
= 3 1Y (7 Yo (cos 48 " (expl- iy sinxel T am)
BN Y&

m=—j
g. Non—oxthogonality':. the atomic coherent states are non-orthogonal:
) Y
< 7 l 7 >
' ¢’ 6 ¢

=[cos 580' cos 50+ exp(i(dp'~P)) sin 46’ sin k0] 2]8;?1" (4.9a)

' Y . 2 . ~ H
ity _ 1+n<ﬂ’)-n(m} 5. . 4.9b)
| (a'qb’leqs-) | { 2 T S

In the later expression, 7 (Q) is the unit vector from the center to the point
(0¢) on the surface of the Bloch sphere. :

106. Over-completeness: within any SU(2)-invariant subspace the .identity

operator may be resolved with respect to either'the diagonal or the coherent
states. The resolution of the identity operator .in terms of coherent states

is not unique, since they are over<complete. A useful resolution is

e

A 2i+1 7 - _ § 7
J] 5¢) i1 a9 ';¢1"12f+1_"'12_j|m> <m] (4.10)

il. Uncertainty Relations: the cancnical uncertainty relations
2a52 5 L2 ASR
ALAL > (5) AT,

-become, after the unitary transformation by U(6¢):
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UOHU, ), I U D) =Ug . T, Tp) | (4.11a)
BJg B ;('/Z)QA]Z . | (4.11b)

Within a coherent state, this uncertainty relation assumes the minimum allowed
value.-

12. Generating Functions: these generating functions play the same role
in atomic physics that the functions (3.12) play for the electromagnetic field.
They are derived in substantially the same way. For example

<¢ | exp(a_J_)exp(a ]3) exp(a+]+)| )
= (cos?560)" {_{lexp((r"+a) 1) explag]) exp((r+a,) 1) 1)
= (cos"56)" {1 exp()'1,) expla ) exp (7] ])

2 2§ : % 2§
=(cos 40) {exp(~%a,) +exp(ha)a_+7T )a, +7)}- . (412)

‘All such generating functions ¢éan be expressed succinctly as the 2j~th power
of the trace of a product of two matrices, one of which depends only on the
parameters 8¢, the other only on the parameters a; 13

V. ;RELATION BETIWEEN ATOM‘EC AND FIELD STATES

T_he field states described in §III and the. atomic states described in
§IV have an extremely close formal resemblance. This resemblance is empha-
sized in Fig. 2, which indicates how the Dicke and Fock states are related
to the Bloch and Glauber states.

This resemblance is not solely formal. Nor does it come about -
because the treatments followed .in §IH and §IV follow the same basic pattern.
Rather, it comes about for the following reasons:
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- Field Atomic
System System
‘Diagonal Fock Dicke
State s ' '
Coherent Glauber Bloch
States '

Fig. 2. A Rosetta stone for the terminology of Quantum Optics

i) The dynamical group for the single field mode, which.is H, , and the
dynamical group for an ensemble of 2-level atoms, which is U(2), are
both 4-parameter Lie groups.

ii} Field coherent states exist in 1-1 correspondence with cosert repre-
sentatives H /U(1) e U(1), which is essentially the phase plane of
the harmomc oscillator. Atomic coherent states exist in .1-1 corre-

spondence with coset representatives U(Z)/U( 1) ®U(1), which is es-
sentially the Bloch sphere.

i1} The groups U(2) and H". and their cosets, the ‘Bloch sphere and the

oscillator phase plane, are related to each other by a group contraction
process 4,15

When the non-singular transformation (c # 0 in 5.1) is performed on

the generators ] of the group U(2), the new basis vectors b obey the
commutation relauons given .in (5.2).

b, | ¢ 0 0o 0o )TJ,
b o ¢ o o |l
b, o 0 .1 122 |},
[3,,5,] =+b, - by,h ) =0
b,b_ ) =-bh_ (b,,5,] =0

[b_,(;;] =b-2c%,  [b_,p) =0 2y
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Although the transformation (5:1) becomes singular in the limit c— 0, the
commutation relations (5.2) remain well defined. In fact, in the limit ¢ — 0,
the commutation relations for the Lie algebra v (2) become the commutation
‘telations for the Lie algebra h,.

It is useful at this point to define the following-limits:

y()/c - A1)
. AE ~dw . (5.3)
% exp (= id)B/c = a |

In the limit ¢ = O the hamiltonian (4.1) becomes equal to the hamiltonian
(3.1) up to a constant additive term:

AEJ +y () J,+y* ()]

= BE (b,- (5,/2¢*) +(y (/) (e],) + (" (/) (] )

c =0

—> Bwb, + () b, + A"(8) b_~(AE/2) b . (5.4)

- In addition, the BCH formulas valid for U(2) (4.7) can be contracted to the
corresponding BCH formulas, valid for H . (3.7). , '
Properties 1,2, and 7 of §III and §IV are the only properties described
‘that depend exclusively on the abstract group dr on its algebra. The remaining
properties (3-6, 8-12) enter into the discussion of the physical systems
through their unitary irreducible representations. '
Accordingly, to treat these remaining properties, we must contmct
- the representations of U(2) to the representations of H4. Here we encounter
a slight difficulty.”? The group U(2) .is compact,'® and has only finite di-
‘mensional pnixa,ry‘irreduc;ible representations. ' The group H o As ndn-conipact, -
-and so has no faithful finite dimensional representations. Therefore, we
choose a. sequence of larger and larger representations of U(2)as ¢ becomes
- smaller and smaller. In this way (7 1o as'c 1 0) we can construct.a faithful
" unitary irreducible representation of H o from the well-known® unitary irre-
ducible representations of U(2). o :
We will take this limit in a way that is transparent from a physical
- viewpoint, by insisting that all energies be measured from the ground state.
Then : '
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Lim 53] _;) = Lim (,3_+(_]0/2c2)) 1_1.>
= Lin (- j+ 1/2¢%)] __:) . (5.5)

In order for the limit to be well d.efined, we demand 1> and c 10 as follows:

i= 1/2c2 (5.6)

| In this limit all tﬁe remaining -propérties 4.3-4.6 and 4.8-4.12 for the _atomifc
system contract immediately to the corresponding properties 3.3-3.6 and

3 8-3.12 for the field system.
As an example of this ptocedure we contract the non-orthogonality

relation (4.9a) to the non-orthogonality relation (3.9a):
l ({9";6' l {93‘) = {_cos %6’ cos 46 +(exp(-i¢') sin 5’29')*(exp(—.i¢)sin 1/2'9)}2’

‘\'{1 /c2|a I --/c2 Ia,l +c2 '*a.} —'-exp'.(a."a.-%.(a'*a.'+a‘a)) .
(5.9)

The remaining contractions proceed in an analogous fashlon This con-

traction mechanism is summarized in Table 1.

TABLE 1

Relation between the U(2) labels and the H labels
in the contraction of the Bloch sphete to the oscﬂlator phase plane.

Group Operators Cdord.iné.tes Eigen Eigen - LCoherent
values states . states
N R © (8/2¢) exp(-id) 25 "I’-) | ¥ )
‘ m o
2 : ‘ E -
Is‘f](,/zc L : itm Dicke - Bloch
H Y
a a a 1 |n> la,‘>

“ata a - #  Fock  Glauber
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VI. APPLICATIONS OF ATOMIC COHERENT STATES

The field coherent states (§1I) and the ztomic coherent states (§1V),
which are so closely related (§V), have a number of useful properties .in
common. Since the usefulness of the field coherent states is firmly es-
tablished*"®, we present liere some physically useful applications of the
atomic coherent states. :

The two appllcauons which we discuss involve the apptoxmnte so-
lution of the Hamiltonian (2.1), and the construction of thermodynamic par-
tition functions for a large class of spin Hamiltonians.

Both applications depend in a crucial way on the overcompleteness
of the atomic coherent states. Let G be an arbitrary operator acting within
an SU(2) invariant subspace of dimensionality % +1. Then G can be expressed
in temms of Dicke states (4.3), as ,

e-x3l) (1ol (1 e

The (27 + 1) matrix elements <m IG |m> are in general mdependent

The operator G can alsa be expressed in terms of the coberent states
(4.5), as '

2 . . . . A ’
G=((2i+1)/4w)lfdﬂ'fdﬂl";2.) (’Q_,lclfg) 1 6

Itisa ren;atkable fact that, because of the overcompleteness of the states
|. 'Y the kernel .in (6.1b) can alWays7 be chosen to be diagonal :

G =((2j +1)/4m) [dqlQ>6@)<e| . (6.2)
The kemel G(@) is a c-number function defined on the surface of the
unit sphere. As such, .it-can be expanded .in terms of spherical harmonics.
oo .+

=3 I av@. - : (6.3)

I=0o m=-1

The function G(§}) defined by (6.2) is not uniqué.' Any other kernel G'(Q)
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o oo +] 1.1
c=3 = Y@ (6.3)

I=som=-~1 ™

defines the same operator G provided only that the lowest (2j +1) coeff1c1ents
appearing in (6.3) and (6.3 are equal.’

~l$m<+l 0€IK2f - (6.4)

Two kemels G({2) and G'(Q) differing only in their “Fourier coefficients”
with / > 2j describe exacfly the same operator G. Such representations of G
may be. said to differ by a “gauge transformation”.

. The importance of the coherent state reptesentatmn to physical ap-
plications lies in this: For any.operator G acting within an SU(2) j-invariant
subspace, it is always possible to construct a diagonal repfesentation (G({2))
vithin a coherent state representation. Then all equations and manipulations
involving the operator G become simply c-number equations and operations
involving the function G(}). ' |

In order to make contact with quantum optics experiments, it is
necessary to know the implications of (2.1). This does not mean that it is
necessary to solve (2.1). Rather, it is only desirable to determine the densi-
ty operator p(¢) for a system gqvemedby (2.1). The coastruction of the
density operator from its equation of motion '

[H, 0] =i#3p/0t : (6.5)

is facilitated by the coherent state representation for the field system and
for the atomic system. *
This comes about for the following reasons:

If the atomic system behaves classically, so that (2.1) simplifies to
(3.1), then the system evolves .into a coherent state (cf.. Fig. 1). As a
result, the density operator becomes a delta function .in the field coherent
state representation. If the atomic system .is not “too quantum mechanical”
in nature, then we should expect the field to evolve into a superposition of
coherent states containing only a “small” number of coherent states.
| Conversely, if the field behaves classically, so, that (2.1) simplifies
to (4 1) then the system evolves into a coherent state (cf. Fig..l). Asa
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result, the density operator becomes a delta function in the atomic coherent
state representation. If the field system is not “too quantum mechanical”in
nature, we should expect the atomic system to evolve into a superposition
of coherent states containing only a “small” number of coherent states.

As a result of these. intuitive considerations we would expect the
coherent state :repreéentation to, provide a useful mechanism for treating the
master equation (6.5). '

The density operator 0 can be described in many representations. In
the diagonal representations (3.3) and (4.3) it is given by

p=2|n'm'><n'm’lp|nm><nm!_ (6.6)

Since experiments are usually designed to treat only the field part of the total
system, or only the atomic part of the total system, it is more useful to con-

sider reduced density operators treating only the field subsystem or only the

atomic subsystem. These reduced density operators are obtained from (6.6)

by taking the trace over the uninteresting subsystem. Thus

o (D =Tegp() = 3 5 |m'><n’|plm><m]| ,

m m

where 7 (6.7A)

<m'1plm > =3 <mn"|p|.nm >
"

Pp () =Tr p(t) = 3 % |a"><n’| pla><n]| |
i ” .

where

(6.7F)

<n'|pla> =S <a'm|p|nm>
”

‘ As might be expected, the reduced density operators are not unrelated.
In the superradiant regime'? they are related through the moments of their
respective shift operators according to
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Trg @) a *Pr () = (- ig/bK)" (—tg/ﬁK) Tr, J3 )2 PA(‘) .-(6.8)

t>>x = 2/¢

where k! is a photon ttailSit time .in a superradiant cavity of length /.
' In many instances® the reduced density operator is essentially assumed
to be diagonal in the Fock of Dicke representation, and then the time de-
pendence of the dzagonal elements op .. (2) or PA,m (8} is determined. While
this approach provides a useful first approxlmatlon, the dynamical information
contained in the off-diagonal matrix elements is lost.
Under a large variety of conditions,!® .it is possible to choose the

reduced density operator o (#)as a diagonal matrix within the coherent state
representation:

pe(0) = [@?a/m)|a>Ria;n<al . |  (6.9F)

We have seen above that it is always possible’ to choase the reduced densi-
ty operator O, (2) as a diagonal matrix within its coherent state representation:

£ © =(2i+1)/8m) Ja@ | 1Y POS:n ] - (6.98)

Under these diagonal ansatze, the operator equations. of motion for
the reduced density operator become simply ordinary c-number partial differ-
ential equations. In fact, they become Fokker-Planck equations. For the
reduced density operator Op (¢) we find '

OR(a,a”;8)/=[((3/3a) a+(3/3a") a™) { ()t ata) +
+ 49 (/3 X3/3a)] R(a.,a*; 1) | (6.10F)

where the parameters Yy:Y, and g descrlbe the linear gam, the nonlinearity,
_ and the fluctuations in the atomic system, respectively.?® For the reduced
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density operator p, () we find?

9Q(8;1)/3t = [(3/36) (j sin O + % 5in O + cos 6)') +
+(3°/36") 5 (1-cos0)) Q8;1) , (6.10A)

where we have assumed an azimuthal symmetry and have set
Q©; t) = sin Bf quP(&,‘b z).

It is clear from inspecrion of (6.10F) and (6 10A) that the drift caef-
f1c1ents 2Re a {(K—')’I) +y,,0 *a} and {jsin @ + % sin 81 + cos 9)'1}
drive the distributions R{a; t) and Q (G; t) over the surface of the oscillator
phase plane and the surface of the Bloch sphere, respectively. The diffusion

coefficients 4g and % (1- cos &) are responsible for the broademng of the
respective dxstnbutwns

The coherent state representation has also been used by Lieb? to

. compute upper and lower bounds for a large class of quantum mechanical
partition functions. The thermodynamic partition functions for which this
technique is useful all involve the socalled spin Hamiltonians. These are

Hamiltonians for N separate pattlcles which interact only thtough their associ-
ated angular momentum gperators J*( =1,2,...,N). These Hamiltonians
need aot be linear in the various spins, nor must they involve spins in only
pairwise combinations. This class of Hamiltonians .includes, as special
cases, the Heisenberg model,? the Ising model, 2% and the Spherical model.?

_ In this particular apphcatlon of the atomic coherent state representation,
let G be an operator that acts within an sv (2) j-invariant subspace Two.
kemels gQ) and G(Q) are of interest

@ =<alcla>
G =((2j+1)/47) [0 |2 >6@Q) <0 . (6.1D)
in particular, we have that

Tr G = Tr ((2, +1)/4ﬂr)fdﬂ Q> 6@)<Q | =((27 +1)/4«n)fm G(Q).
| (6.12)
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When G is an operator of the form (v J) " then £(Q) and G{Q) are
' remarkably closely related. To highest order in powers of j they are given

by

2@ =(|v]y (\+ 66 | . (6.1%)

¢@) =(|v])VG+1f + 6™y . (6.13b)
Thus, for example 2

s2@) =j2cos® 0+ %7 (1~ cos?0)— j? cos? O

S2@) = (j+1Y cos® O- k% (7 +1)(1- cos? O) = (j+1) cos’ 0 . (6.14)

The quantum pal;titim function is

Z < Te exp (<) | (6.1-5),_
This can be expressed |

n J(@9,/4m) <Qy | exp(- By | Q) >

i=1

= Tr exp(-SH) = Tr lim (I-(1/n)BH) . (6.16)
] '

For the first term in this equality, we have

i=1

N " - -
g j(m /4ﬂ)<ﬂN|exp( B |Qy>> T [@Q;/4m) exp(-B<Qy [H|2>) .
i=1 e
(6.17)

by the Pexeris—Bogohubov mequallty (<c}5l exp (X)I <;5> > exp(<|Xx I ¢> ).
The term in the exponential is . : |
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<Qu|H 19> =5 @) 6.18)

and under the replacement (6.13a), allowable by the assumpfion thatH isa
spin Hamiltonian, we have that the right hand side of (6.17) is sunply the
classical partition function -

F

n J(aQ,/4m) exp (-BbQy)) = z¢ (,1,,2, i) (6.19)

i=1

‘to highest order in each value of j; .
On the other hand, for the third term .in (6.16), we have

Tr Lim(I- (1/n),3f:) =Tr II f(dn /477)L1m{|Q,N>(1 (_l/n)ﬁH(Q ))<9N1}

77—

<Te NI J@Q /4m{]9y> Lim (1- (1/,:)53(9 N <ay |}

i=1 _

. (6.20)

by the Schwartz inequality. The limit in the last term in (6,.20) is trivial and
leads to the classical partition function

Te 1 g, /4w)|n > exp (-BHQY ) <1 =

i=1

i=1

= IIf(dQ /47T)exp(—ﬁH(Q )= z° (;1+1,;2+1 iy 1)
- - - (6.21)

to the highest order in each value of j; :
As a result of the mequahnes appearmg in (6.17) and (6.20), we

"~ have

II f(dQ /47T)exp( ,Bb(Q )< Tr exp( ,BH)S H f(dﬂ /47T)exp( H Qy )

i=1. i=1

S (6.22a2)
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ieeig) €2 2% 41, g+ D) (6.22b)

When each 6petator‘.]i in ZQM is replaced by the corresponding normalized

operator P/ 1) as.in vacious Spherical model Hamiltonians, and each
j;—eo , the left and right hand side of (6.22) become equal, giving a precise
value for the quantum partition function. :

VIL. DEFINITION AND GENERAL PROPERTIES OF COHERENT STATES

Coherent states were originally defined by Glauber* 5 for the electro-
magnetic field. Glauber found three equivalent ways to define field coherent
states:

" M1. A coherent state is obtained by applying the unitary translation
operator U(a ) to the ground state (3.9):

|a>=U@)] 0> = exp{ad’ - a*a) | 0> .
M2. A coherent state is an eigenstate of the annihilation operator @ (3.6):
a| a> = a.l a >

P1. A coherent state is obtained by applying a classical driving current
to the ground state of the electromagnetic field.

The proce'dureé M1 and M2 are mathematical; the procedure M1 is the mathe-
- matical representation for the physical procedure P1. '
~ 'The.three procedures M1, M2, and P1 are equivalent for the electro-
magnetic field because of the particular commutation properties of the field
mode operators da, aT, a,1(3.2). For systems described by operators
with different commutation relations,.the three procedures M1, M2, and Pl
are not all equivalent .in general.
In order to extend the extremely useful coherent state conc €pt to more
complicated systems, it is necessary to generalize one of the two mcompatible
-procedures M1 or M2.

"It is at first sight attractive to use the concept expressed in MZ as a
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basis for defining coherent states for arbitrary systems. For eigenvalue
equations play a prominent role .in the quantum theory.® In this instance
the eigenvalue equations are non-hermitian and the eigenvalues are complex.
This approach has been adopted by Barut and Girardello? in discussing “new
coherent states” associated with the spectrum generating algebra su (1, 1).

‘Adoption of M2 as a basis on which to generalize the coherent state
concept suffers from two major drawbacks, the first mathematical, the second
physical: |

1. Coherent states could not be defined in Hilbert spaces of finite di-
mensionality.  In particular, this would preclude construction of co-
herent states.for compact Lie groups. Moreover, the states defined
in this way have few useful properties, and.in particular they are not
computationally useful.

2. The states so defined do not correspond to physically realizable
states, except under the special circumstances that the commutator
of the annihilation operator 2 and its hermitian adjoint d isa multiple
of tlie identity operator. Under these conditions we have restricted
ourselves to the electromagnetic field.

. In attempting to generalize the concept of coherent state, it is much
more useful to use'M1 as a point of departure. Then the mathematical ob-
jections raised above (#1) are automatically eliminated. In addltlon, since
M1 is the mathematical representation for P1, the physical objections raised..
abave (#2) are also eliminated.

We now proceed to define coherent states.
Let ¢ be a dynamical transformation group (_i €., §S-matrix) which acts

by means of a umtary irreducible representatlon F (G) on a Hilbert space M»
Since s (G) is 1rreduc1ble Ml is an invariant subspace under G.. Let | ref > OEM}L

" be an arbxtrary reference state in Mk which is normahzed to unity: <ref| ref>= 1.
Let HCG be the stability group of | ref> . That is, H' leaves | ref > invariant
_ up-to a phase factor ar modulus unity:

I_‘ (b)lref>—|ref> exp(:’y(b)) | : - 7.1)

b eH c G .

'Ihen the action of an arbltrary gfo,up element g€ G on the reference stater
,ref> IS gwen by . o ' - | |
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[ )| ref> = I (ch)| ref > = T o) T )| cef >

= I_'K(c)ltef> exp (iy (b)) = |c> exp (47 (b))
X . ' (7.2)

g€G - c€G/H

beH | > em™

The states [ (c)lref>— |c> EMK exist in 1-1" correspondence with the -
coset representatwes c€G/H. The states | c > are on the orbit of Iref>

under I (G/H). Moreover, since r (G) is witary, the states | ¢> are norma- R
lized to unity: '

<clc>ﬂ<ref‘rl(c'.1)r?\(c)|ref>= <ref [ref> = 1.

The states |c> are not orthogonal and they are overcomplete. - States of
the form '

FMG/R)| ref> | @y

should therefore be considered as candidates for generalized coherent states.
‘Before defining coherent states in general, we 1ook at the spectrum of proper-

ties that the groups G,H, the representation F (G) and the reference state
]ref> may possess.

A. The group G may be an arbitrary dynamical transformation- group. Or
we may .impose sufficient additional structure on G ‘so as to make it a
finite dimensional Lie group. We may impose furth er adchtmnal
structure and demand that G be compact

B. The unitary n.'reducﬂ)le representatmn l_1 (G) may be arb1trary -By

xmposmg addztional structure we may demand 1_' (G) be square inte-
~grable. Fmally by 1mposmg a gteat deal of addluonal structure, we

could demand diat Iﬂ)\(G) be finite dlmensmnal
C. The referetrce state |ref> of norm unity may be an arbltrary state

jarb > in M?L By impoging additional constraints, we could demand
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that it be an elgenstate |d1ag > of somé unperturbed Hamiltonian ﬂ
Finally, we can:impose yet:more-structure-and demadnd éhiat it be an _

extremal state |ext> in M 7\ An extremal state (for ekample the -
ground state ! goid > —l 02) isa state annihilated.by a. maximal sub-
.algebra of the algebra (not necessanlya Lie algebra) generating the

dynamical transformation greup G. If G 1s a sem1sunple Lxe group,
then

|exe> = fSMb> S

where Mb is the h.ighest wéight in M and SGW the Weyl group f
Do The Stablllty groupH is compietely determm ed by the chmce of G,
l_' (G), and 'tef>:-' Hitis a ¢lo'sed subgroup of G which | may’ be compact

or non ~compact when G is non-compact, but which must beé: compact’
when G is compact.

I -,,: 135

This spectrum of possibilities. is summarized in Table 2. -

warna® e linn e n s S0 TABLE2 S
Spectrum of possibilities available for {G," ]ref> H}in constructmg a

useful definition of generahzed coherent state. Wlthm any g1ven fow,

A G 1 dynamicei trans-
formation group

N arhm'arv umtary
£ frkedud ibret repre-
sentatmn -
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Definition: with the notation as described above the coherent states associ-

ated with the system {G, r |ref > H}are the states on the orbic[’ (G/H)l ref>
provided:

Al: G isa dynamical transformation group;
; AL .

B2: I'" is square integrable;

C3: |ref> = |ext > is an extremal state.

With this definition for generalized coherent states, we are .in a po-
~ sition to examine each of the properties #1-12 discussed in §III and §IV for
two particular systems. Some of these properties depend only on the dynamical

group G(#1,2,7), others depend on the representation F—R(G) and the choice
of reference state. That is, some properties (#3) are valid for abitrary [
some {#10) depend on I_' being square integrable, while yet others (# 13)

require Iﬂxto be finite dlmensmnal Some properties of coherent states
(#9) are valid for arbitrary reference states, others (#3) require the reference
state to be diagonal, while still others (#11) are valid only when the reference
state is extremal. In Table 3 we summarize the properties of general coherent
states, including a summary mathematical characterization for each property,
as well as a statement about the amount of math ematical structure required
for the property to be valid. In this Table we have mcluded a thirteenth
property suggested by the non-trivial applications of ccherent states described
in §VI.

Perelomov? has adopted a definition for colierent states similar to
the one presented here. The definitions differ 'essentially in the amount of

mathematical structure required in determining G, I-' , and Iref> These differ-
ences are summarized in (7.4). :

In this work Pe:;eiomqug
G Al - A2
A : ,
I - ‘B2 Bi (7 .4)
| cet > 3 c1

These differences in detail lead t6 some differences between the ap-
proach presented here and that of Perelomov: ‘

A. Perelomov’s more restrictive choice for G allows alway s 3 for the
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Propesty
Number

0.

i1

‘12,

i3.

TABLE 3

Gilmore

SUMMARY OF PROPERTIES OF GENERAL COHERENT STATES

Mathemartical
Structire Required

Al

Al

A2
Al,B1,C2
Al1,B3,C3
A1,B1,C3
Al,B1,C1
ALBLC1
A1,B1,C2
A1,B1,C3
AZ"
Al1,B1,C2

a2*,B1,C3

- Al,B1,C1

Al,B1,C3
.
A2, B2%,C1

A2*.B1,C3

A2,BL,C3

A3", B3'.C1

Property Name

Model Hamiltonian

‘Commutation Relations
Diagonal States
‘Ground State

Unitary Transformation

Eigenvalue Equations

BCH Formulas

Eigenstate Expansion

Non -orthogonalicy

Over~completene ss

Uncertainty Relations

Generating Functions

Diagonal Representation

Mathe matical Summary of Propertv

R+ ¥ =iD OH+i(D, ) E+D_()E)
lo.al ¢ g

la,gl cg

H,E B
span g
M (E++E_)M {diag >

>~ (@&, o>

E|o>=0

[Q> = exp(@ « B)|cef > = 0(Q)|ref >

U(Q) {Invariant Operators} U@ Q> = lav {@>
U(Q) { Diagonal Operators} U () |0 > = Eig |@>
(@) { Aanihilation Ops. }UT'@)|Q> = 0]a>

éxp(ﬂ * B) = exp(Q,E,} exp (G H) ex_p(ﬂ__E__)
|g> = s M) (g +'E__)M | diag >
T o8

= exp(,E,) | gad > N(Q,)
<> = <ref | QD' Y ref >
=y (exp (iy8); 07Q' =ch

'y
dimT"

mﬂ?a) i (G/H) (57;' =1
A(Re E, y Alm E, ¥ = minimum

B, = U@Q) B, UTQ)
f(A,ﬂ)= <0 | exp A-E|O>

A
= diml’ >kan <ala
K= fla>k@y<eldum)

‘Requirements Jabelled with a * may possibly be relaxed somewhat.



Properties of coberent states.. . 1-/3
construction of BCH formulas (47,10, 12). Since Perelomov does not discuss

‘BCH formulas,his more restrictive requirement on G does not lead to any
sharper results.

B. The square-integrability requirement adopted here guarantees the
existence of over-completeness relations (#10). Without this requirement
(Bl instead of ‘B2), property # 10 may not be valid.

C. The demand that |ref> be an extremal state guarantees thc usefulness
of BCH formulas as a computational device. 30,31 Thus, this restriction
- (C3 as opposed to C1) is useful in the discussion of those properties de-
peading on the application of BCH formulas (#8,9,11,12).

In practical applications, we generally adopt the more restrictive
requirement A2, since we do not yet know how to construct BCH formulas
simply under only the requirement Al. In practice, Perelomov adopts also
the more restrictive requirements B2 and C3 in place of ‘Bl and C1:

Present Work Practic_:al VPerelomov
Applications
Al ‘ A2 , A2
B2 - - B2 - B1
C3 o C3 {C1

In closing this section, finally, we prove the following important
theorem. This theorem provides a kind of selection rule for coherent states,
and is responsible for the usefulness of coherent states for describing physical
processes. '

Theorem: if a system is originally in a coherent state, then .it will
evolﬁ_e into a ccoherent state.

Proof: Assume the original system state is | ¢, >:
le,> =T} ref>

‘Then durmg a time interval AT = £~ it will evolve under an element g of
.the dynamical tran sformation group G The system state evolves into

A 2N | o
I (g)l > = r?\(gcl)l ref> = Fl(czb)lref> = lcz >.exp (:")f %)
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g €G

b eH

€56, € G/H

le> > en™ . ‘ (76)

We point out that this proof is very general: the level of mathematical structure
required for this theorem is (A1, B1,C1).

VI. APPLICATION TO SUPERFLUID SYSTEMS

We now apply the considerations of the preceeding section to the de-
scription of a superfluid system. The Hamiltonian describing a system of N
bosons interacting weakly with each other is*

ﬂ:%+%m

Hy =3 abib & =%°k*/2m

iy o | |
_Jntpm =4 Ep}.‘q Vibp +kbqkBb, - (8.1)

Here, 3{0 describes the kinetic energy of the non -interacting bosons. The
term € = #°k*/2m is the kinetic energy of a boson with momentum #k .in mode
k. The perturbation term Jt(pe“ describes the scattering of two bosons out
" of the momentum states (p,q) and into the momentum states (ptk, q-k). The
creation and annihilation operations obey the usual commutation relations:

USDA S N o | (8.2)

This scattering proceeds through an interaction potential V(x) whose Fourier
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components are Vi . We will also assume V, =V .
Coherent states for this system are obtamed by applying the unitary
transformation operator

I .
g=Texp(-G/H) [ M) dr) | (8.3)

)
to the extremal state

| gnd> =Il<i|0k> (8.4)

Here 7 is the usual Dyson time ordering operator®, and |(J)f > is the ground
state of boson mode k under the unperturbed Hamiltonian

The set of operators appearing in (8.1) does not close under commu -
tation, and tlletefore X is not an element in a (finite dimensional) Lie algebra.
The dynamical transformation group G is thus not a (finite dimensional) Lie
group. -

: We therefore try to replace ¥ by an approximate model Hamilton ian
which is an element in some Lie algebra, and for which the associated dy-
namical transformations (8.3) are elements in a Lie group. Under these
circumstances, the full power of the computational methods developed within
the context of Lie group theory 13.30 can be brought to bear on the simplified
problem.

We make this replacement using the following observation. In a
superfluid system, the k = 0 state is macroscopically occupied at the expense
of states with k # 0. We therefore lmear:ze the Hamiltoninn ¥ under the
following two assumptions:3* | ,
1. the operators bl » by can be replaced by the number No/z , where N =<bl by>s.
2. terms higher than quadratic in operator b};, by (k #0) may be neglected.

Under these two simplifying assumptions the Hamiltonian becomes

H =%v;, +3 (ek+N Vi + N, o)bkbk+

XDV RACLAETN IS - C(8.9)
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In these expresions, 3" indicates that the summatlon excludes the case

k =0 . The occupation number N, in the ground state can be replaced by
the total number N of bosons present using

‘N=N,+Z'85 . (8.6)

Within the terms of the approximation above the Hamiltonian can be expressed

H = zVN +3' (;H ) +3 (Jipmk

(), = (gt N A - (8.7)
Bloere ) = 2N (L] + 58 ) .

Aside from the constant term, the ham:ltoman is the direct sum of smgle
mode ham11toman s,

| }{=Eeﬂk,

(8.8)
where each single mode Hamiltonian has the structure
M = (g +NV) (Bl +6b ) + (8.9)

-+ NV(bIkbjk +'b+kb-k)

As a result, the wave funcuon !l/) >isa dltect product of single mode
wave functions ll,bk

[y >= El Ve > (8.10)

where each single mode eigenstate obeys
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M > =E®) gy > .

The Hamiltonian (8.7) is now an element in a Lie algebra, for the
operators appearing in (8.9) close under commutation.

P
f+k _b+kb-k

i
J-k =Tek = bgbig = byl

il

[].,_k,]_k] £bikb~Tk’b+kb-k]
= _t PR |
= - (b+k'b+k + b_kb_k) = - 2"3‘( (8.11)
- The operators Jak » Jif obey the su(1, 1) commutation relations.
Usk’ It_k] = 1]k
AT Tl =20, . | - 812)
Moreover, operators belonging to different modes k commute.
[Jka'lk"] :‘[Jy'l’} Sk,k' . A ) (8.13)

Since the algebraic treatment® of each k (# 0) mode is identical, we
. suppress the subscript k in the algebraic compurations to follow. It is useful
to define the following hermitian linear combinations: o

J, =50, )= '/z(bfbﬁb;b,j
o= b -_ i o
=i (=T = (/2 (b b, - 5,5 )

=%l 8 v 1) (814
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The se hermitian operators have the commutation relations
. 11=41,
7y, 1) = - Y
Foo Il =-1], k k
0,1, =-41, (8.15)
The difference operator A also has useful properties
_ 1 t, _ Al
A=blb -85 =A
J,48) =0. (8.16)

Since the operator A commutes with the Iy, itis:

1. Mathematically, an invariant which will serve to label the unitar

y.
representations of SU(1,1). '

2. Physically, a constant of the motion.

The single mode Hamiltonian (8.9) can be expressed as a linear super-
position of the elements J,:J, in the su(1, 1) Lie algebra:

M =ONVL -ty p=e+NVINY) (8.17)

One of these two generators can be eliminated by applying the unitary transfor-
- mation U(f) = exp (+ i6],) to this Hamiltonian using

], ‘ [ cosh & -sinh 6 17,
exp (-i@]z) exp (- igfz) =

J, -sinh & cosh @ A

The transformed Hamiltonian is
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V@) KU (©) = NV {(u coshf - sinh 0) J, +
+(~-pn sinh_9+co.sﬁ ) ]1}- (e +NV) . (8.19)

By a suitable choice of &, either ]3 or J, can be eliminated from the equation.
Recall that € = ﬂ2k2/2m >0. Therefore

1. Atttactne potennal V<o

tanh 6 = 11 ; U(O) JnlU"I(é’} = INV sech @] - (€ $NV) .  (8.20)

2. Repulsive potential, V> 0:
tanh6 = 1/u; U@)YHU ' (8) = 2NV esch 8], - (€ +NV) . (8.21)

The infinite simal generators J, and J, generate subgroups conjugate.
to §O(1,1) and U(1), respectively. Since J, is a noncompact generator, it
has a continuous spectrum. On the other hand J, generates a compact sub-
group, and therefore has a discrete spectrum As a result, there is an energy
gap between the ground and first excited state in the second case (V> 0),
which is responsible for macroscopic condensation into the ground state with
concomitant superfluidity.

In the superfluid case with hawiltenian proportional to J,, a lowest
lying state must exist which obeys

, , | |
) @.2)
gnd : |

The hamiltonian elgenstates must belong to a space which carries a semi-
bounded - 35 % umtary irreducible representation of SU(1,1):

T_j+

These representations are charactenzed by the eigenvalue jG+1)of the
Casimir operator

b, b




180 . : Gilmore

L,=13 -1, -} (¥, 0,l=0. | (8.23)

Since C’z commutes with the Hamiltonian, it must be related to the difference
operator A, which also commutes with ¥, and j is given by

i=-%lal-y . (8.24)

The effect of the diagonal gen erator A and the shift operators It on the

basis vectors I ) is given by
Jo = > V(n +1) (s -27)
n n+l ' T :
I = Vn(n-2j-1) - (8.29)
U n-1 '
i |7 ' o
J, = (n ~j) n=01,2,...

The energy eigenstates of the superfluid Hamilton ian are

=(2n+1+|A|) E~(e +NV)

‘where Ez'=(€ ‘i‘NV)z-(Niw")2 ] - . (8.26)

The eigenstates‘of the Hamilton.ian (8.9) are

1\
"

i o
isb,,>=v"(9)’> : - RS2
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In particular, the ‘grounc'i' state of (8.21) is the coherent state, obtained by
setting n = 0. : o ' | ;

The ground state is constructed most easily by applying the appropri-
ate SU(1, 1) BCH formula. These BCH formulas are analytic continuations
of the SU(2) BCH formulas”'%:1%3 and have also been constructed explicit-
ly.® Applying the appropriate BCH formula, we find for the ground state

. B NE
> =U'1 (6) , ) = exp (-I/z@(f...“].))l )
gnd n=0 0

. f ‘ :
:“exp(_ tmh'/z91+) EXP(—IZID cosh I/zg ]3) exp (tanh'/29]_)| ) .
0

. i o ) {8.28)
Since ]‘_ , > =0 » .
. ,
. ; j | o
exp (tanh 46 J ) b =1 . - (8.29)
0 iy . : ’

| i\ - j
Since ]3,) =(-7) > ,
0 o

, g i
exp (-2ln cosh %0 ], l ) = exp (2 ln cosh 48) I )
os ' 0.

f 2j | ‘ B .
=_| > {cosh 46} . (8.30)
0 S .

The single mode ground state is therefore

i L .2:'- N i '
_ = {cosh 46} exp (- tanh%_@b,',b__) Ty
d 04

gn

cach =NV/€+NV) . R
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The total system ground state of (8.7) ix a direct product of single mode ground
states (8.10), each of the form (8.31):

exb(- tanh '/29(’() b'i'k bﬂk)
0

| i) | i(ky
] gnd > =kgo® {cosh %’9(&)}2]( bl :

(8.32)

Once the single mode coherent states (8.31) have been obtained ex-
plicitly, jt is possible to show their non -orthogonality and over-completeness
explicitly. Instead of doing this directly, we first compute a useful gener-
ating function. To compute the moments of the operator J , it is sufficient
to compute the derivatives of a simple generatin g function:’> 13- 30

<0'|g)* 16> = (@/do* <6'| expaf,)] 6> | 0
. a=

(8.33)
where
|9> = {cosh %6} exp(- tanh'/29]+)
’ 0
27 EA : '
<t9'| = {cosh X6'} , ) exp(-tanh 38']) . (8.34)
' ]

Arbitrary moments (& non-integral) are computed in the usual vay.

It is more convenient to determine a more general generating. funr+ion
than the one introduced in (8.33). This function is

f(@,B,% = <0'| expag, +B. +y1 )| 6> . (8.35)
This generating function is, moreover, .easy to éompute, for
f(a,B,¥)={cosh 56’ ¥ {cosh 56y x
><< ]exp (- tanh %0 ) exp(a], +BI+ Y]y) exp(- tanh 5 6] ) I )
0 - L dof

(8.36)
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Applying now the appropriate SU(1,1) BCH relation gives

fla,B,7) = {cosh 46’ cosh '/29}2’

[ pi ‘ i
(( ,exp(x'm) exp(=2n zJ,) (exp(xf.), ))
0 : 0

| . 2 [ L
= {cosh 48’ cosh %6} exp (= 2In zJ{

0 0
) 25 2§ .
= {cosh %60’ cosh L6} ! (z) . (8.37)
The function z is given by

- tanh %6’ tanh %50 ~ tann %60' llcoshw +%y shw/w ashw/w
z="Tr o '

tanh %6 1 ~Bshw/w coshw-%yshw/w

w? = (l/z')’)z- a8 . : (8.38)

From this generating function we easily compute

X . & : .
<&ty 16> = /ap) I(O”B’O)|B=o

» k . ’ -
= {cosh 0" cosh 46} (d/dB) {1~(=f) tanh %0 - tanh %6’ tanh 56>
' o, k : 2f -k
= (cosh 46" sinh 456) (T(2j +1)/T(2j +1- &) {IN} (8.39)
IN = co#h %6’ cos’h'%@ - sinh %8’ sinh '/29 . (8.40)

In particular, the inner product <8 'I 6> is determined by setting k = 0.
. Now we show.that the identity operator can be resolved in the co-
herent state representation. We construct the operator '
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) 0>1<Q|du(G/H) . 8.41
Qe‘(j;/H] I M /H) ( )

This operator commutes with the action of all elements g'€G:

Men [ le><eldqe
QeG/H

=gy ST @ 0><0 DM@ Y dp @)

= F?L(g "y (1/vor() [ Qs lo><o |f’7\(b'19'1) d (QB)
Ao, [N -1
- ={1/vora) [T ' | 0><0| T (e™") du(g)
i Ay W IS -1 ,-1 ' A t
= (1/vol () [T (g g_)i0,><0|F (g7g  Ndug'en) ("

={ [ |Q><Q!dp(m}l“7‘(g’) ) - (8.42)
' QeG/H - .

As a result, the operator (8.41) is a multiple of the identity

Jle>i<elu@ =y = - (8.41)
9 o

and 7 can be computed by taking the 00 matrix element

<O-lf1_'?\(ﬂ)|0'>'<0[FK(Q'I_)|O>J;L(Q) =y<o|d|o>
Q |

JI @ duemy=o. 843
G/H | | AR
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This exists whenever F is square mteg:able When G is compact, the
resolution of the 1dent1ty has the form given exp11c1tly in Table 3.
- The resolution of the identity for SU(1, 1) has been given explicitly by

Perelomov: % -
\

-(2j+1)w'fjlﬂ>1<n1d#(9,)ml-d . (8.44)

The integral is over the hyperboloid SU(1, 1)/U(1).
The results. presented above are valid for any physical system whose
dynamical transformation group is SU(1, 1), or a direct product Itsu(, 1).

. IX. SUMMARY AND CONCLUSIONS

The propérties of field coherent states, originally introduced as a
useful system of vectors in terms of which to represent physically occurring
states of the electromagnetic field, have been studied from a group theoreti-
cal point of view. We have been able to find a group theoretical interpre-
tation for each of the properties (§III, #1~12) which make the coherent states
such an attractive mathematical representation for certain physical systems.

These properties have been applied to the description of an ensemble of
N identical 2-level atoms interacting with an external electromagnetic field
_(§IV) The treatments given in §III and §IV are extremely similar in nature.
This- sumianty exists for 3 reasons:

1. The procedure described in §IH is related to the procedure described in
§IV by a group cqntractibn process. This is shown explicitly in §V.

2. The problems described in $IIl and §IV are essentially duals to each
' other. This duality has suggested several non-trivial applications of

the newer atomic coherent states. Two such applications are outlined
in §VL

3. The calculations carried out in §HI and §IV are special cases of a much
‘more general procedure for constructing coherent states. Such states are
defined in §VII as staj:es on the orbit F?&(-G/ H) l ext >, .wheré lext> is an
extremal state (i. e., ground state)- in a Hilbert space M?\ which carries a
unitary irreducible representation I-' of a dynamical transformation group

. G, and where H is the stability group of ‘ext> The properties of gener-

alized coherent states are outlined in § VII and presented in Table 2 and
Table 3. '
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Finally, in §VIII the coherent state concept is used to treat the
Foldy model for a superfluid system in a simple and elegant way.
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RESUMEN

_ Se obtienen estados coherentes aplicando una transformacién unitaria
dinamica a un estado extremal en un subespacio invariante de un hamiltonia-
no mecanico cudntico. Las propiedades de los estados coherentes quedan
completamente caracterizadas en términos matematicos. Ademias, probamos

el siguiente teorema que es muy ttil. Un sistema fisico inicialmente en un

estado coherente, o en particular en su estado base, evolucionard a un esta-
do coherente. Damos varios ejemplos de la utilidad de los estados coheres-
tes.



