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A brief review of the physical significance of the paradox of Einstein, Rosen, and Podolsky is given, and
it is shown that it involves a kind of correlation of the properties of distant noninteracting systems, which
is quite different from previously known kinds of correlation. An illustrative hypothesis is considered,
which would avoid the paradox, and which would still be consistent with all experimental results that have
been analyzed to date. It is shown, however, that there already is an experiment whose significance with
regard to this problem has not yet been explicitly brought out, but which is able to prove that this suggested
resolution of the paradox (as well as a very wide class of such resolutions) is not tenable. Thus, this experi-
ment may be regarded as the first clear empirical proof that the aspects of the quantum theory discussed
by Einstein, Rosen, and Podolsky represent real properties of matter.

r. INTRODUCTION
' 'N a well-known article, ' Einstein, Rosen, and
~ ~ Podolsky have given an example of a hypothetical
experiment capable of testing certain apparently para-
doxical predictions of the current quantum theory. In
order to illustrate this experiment we shall consider a
special example which permits us to present the argu-
ments of Einstein, Rosen, and Podolsky in a simplified
form. '

Vje consider a molecule of total spin zero consisting
of two atoms, each of spin one-half. The wave function
of the system is therefore

j.
0=—LA+{1)0-(2)—0-(1)0+(2)j,

W2

where P~(1) refers to the wave function of the atomic
state in which one particle (A) has spin +iii/2, etc. The
two atoms are then separated by a method that does
not inRuence the total spin. After they have separated
enough so that they cease to interact, any desired com-
ponent of the spin of the first particle (A) is measured.
Then, because the total spin is still zero, it can im-

mediately be concluded that the same component of the
spin of the other particle (8) is opposite to that of A.

H this were a classical system, there would be no

difhculty in interpreting the above results, because all
components of the spin of each particle are well defined
at each instant of time. Thus, in the molecule, each
component of the spin of particle A has, from the very
beginning, a value opposite to that of the same com-
ponent of 8; and this relationship does not change
when the atom disintegrates. In other words, the two
spin vectors are correlated. Hence, the measurement of
any component of the spin of A permits us to conclude
also that the same component of 8 is opposite in value.
The possibility of obtaining knowledge of the spin of
particle B in this way evidently does not imply any

'Einstein, Rosen, and Podolsky, Phys. Rev. 47, 777 (1935},
herafter referred to as ERP.

2see D. Bohm, Quantum Theory (Prentice-Hall, Inc. , New
York, 1951},Chap. XXII for a fuller discussion.

interaction of the apparatus with particle 8 or any
interaction between A and B.

In quantum theory, a difhculty arises, in the inter-
pretation of the above experiment, because only one
component of the spin of each particle can have a
definite value at a given time. Thus, if the x component
is definite, then the y and s components are indeter-
minate and we may regard them more or less as in a
kind of random Quctuation.

In spite of the eRective Quctuation described above,
however, the quantum theory still implies that no
matter which component of the spin of A may be
measured the same component of the spin of 8 will
have a definite and opposite value when the measure-
ment is over. Of course, the wave function then reduces
to/+(1)$ (2) or top (1)f+(2), in accordance with the
result of the measurement. Hence, there will then be
no correlations between the remaining components of
the spins of the two atoms. Nevertheless, before the
measurement has taken place (even while the atoms are
still in flight) we are free to choose any direction as the
one in which the spin of particle A (and therefore of
particle 8) will become definite.

In order to bring out the difficulty of interpreting
the result, let us recall that originally, the indeter-
minacy principle was regarded as representing the
eRects of the disturbance of the observed system by the
indivisible quanta connecting it with the measuring
apparatus. This interpretation leads to no serious
difhculties for the case of a single particle. For example,
we could say that on measuring the s component of the
spin of particle A, we disturb the x and y components
and make them Quctuate. This point of view more
generally implies that the definiteness of any desired
component of the spin is (along with the indefiniteness
of the other two components) a potentiality' which can
be realized with the aid of a suitably oriented spin-
measuring apparatus.

In the case of complementary pairs of continuous
variables, such as position and momentum, one obtains
from this point of view the well known wave-particle

3 D. Bohm, reference 2, Chaps. VI and XXII.
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duality. In other words, the electron, for example, has
potentialities for mutually incompatible wave-like and
particle-like behavior, which are realized under suitable
external conditions. In the laboratory those conditions
are generally determined by the measuring apparatus
although, more generally, they may be determined by
any arrangement of matter with which the electron
interacts. But in any case, it is essential that there must
be an external interaction, which disturbs the observed
system in such a way as to bring about the realization
of one of its various mutually incompatible potentiali-
ties. As a result of this disturbance, when any one
variable is made definite, other (noncommuting) vari-
ables must necessarily become indefinite and undergo
Quctuation.

Evidently, the foregoing interpretation is not satis-
factory when applied to the experiment of ERP. It is
of course acceptable for particle A alone (the particle
whose spin is measured directly). But it does not ex-
plain why particle 8 (which does not interact with A
or with the measuring apparatus) realizes its potenti-
ality for a definite spin in precisely the same direction
as that of A. Moreover, it cannot explain the Ructua-
tions of the other two components of the spin of particle
8 as the result of disturbances due to the measuring
apparatus.

One could perhaps suppose that there is some hidden
interaction between 8 and A, or between 8 and the
measuring apparatus, which explains the above be-
havior. Such an interaction would, at the very least, be
outside the scope of the current quantum theory.
Moreover, it would have to be instantaneous, because
the orientation of the measuring apparatus could very
quickly be changed, and the spin of 8 would have to
respond immediately to the change. Such an immediate
interaction between distant systems would not in general
be consistent with the theory of relativity.

This result constitutes the essence of the paradox of
Einstein, Rosen, and Podolsky.

2. POSSIBLE INTERPRETATIONS OF THE PARADOX
OF EINSTEIN) ROSEN, AND PODOLSKY

It should be noted that the difhculties arising in
connection with the ERP paradox are serious only for
the case that particles are so far apart that: (a) the
observing apparatus can inQuence only one particle at
a time and (b) the two particles do not interact signifi-

cantly. On the other hand, it was not possible previously
to find an experiment which would test the many-body
Schrodinger or Dirac equations under the conditions
described above, in which this paradox can arise. For
example, it is evident that the agreement with experi-
ment of the energy levels of the many electron-atom
cannot test for the essential points that we are discussing
here. Moreover, as we shall see in the Appendix, it has
not yet been possible to make such a test with the aid
of scattering experiments.

At first sight it wou1. d seem then that there exists at
present no experimental proof that the paradoxical
behavior described by ERP will really occur. If this is
so, then we are free to consider the assumption that
perhaps the difhculty comes from the yet experimentally
unverified extrapolation of the many-body Schrodinger
and Dirac equations to the case where the particle's
wave functions do not overlap and where the particles
do not interact. In fact, Einstein has (in a private com-
munication) actually proposed such an idea; namely,
that the current formulation of the many-body problem
in quantum mechanics may break down when par-
ticles are far enough apart.

The consequences of such an idea have already been
discussed by Furry. 4 To illustrate Furry's conclusions
in terms of our problem, we may consider the possi-
bility that after the molecule of spin zero decomposes,
the wave function for the system is eventually no
longer given by Eq. (1), which implies the puzzling
correlations of the spins of the two atoms. Instead, we
suppose that in any individual case, the spin of each
atom becomes definite in some direction, while that of
the other atom is opposite. The wave function will be
the product

4 =4+s.(1)1t-s,.(2), (2)

' W. H. Furry, Phys. Rev. 49, 393, 476 (1936).

where P+e, „(1) is a wave function of particle A whose
spin is positive in the direction given by 8 and p. In
other words, each particle goes into a definite spin
state, while the fluctuations of the other two com-
ponents of the spin are uncorrelated to the Quctuations
of these components of the spin of the other particle.
In order to retain spherical symmetry in the statistical
sense, we shall further suppose that in a large aggregate
of similar cases, there is a uniform probability for any
direction of 0 and y.

It is true that in any single case, the total angular
momentum will not be conserved (just because the
fluctuations of the two particles are now uncorrelated).
However, thus far, there has not been given an experi-
mental demonstration of the detailed conservation of
every component of the angular momentum, for par-
ticles that are far apart and not interacting. On the
other hand, with the model that we have discussed
here, the uniform probability of all directions will lead
to the experimentally observed fact of conservation on
the average. Thus, all evidence cited up to this point
is equally consistent with either theory, but the model
described above has the advantage of avoiding the
paradox of KRP. For if this model should be correct,
there will be no precise correlation of an arbitrary com-
ponent of the angular momentum of each particle in
every individual case, and our decision to choose a
certain direction for measuring the spin of particle A
will have no inhuence whatever on the state of particle
8 Lsince the wave function is just the product (2)$.



D. BOB M AND Y. A HARONOV

In Sec. 3, we shall describe and analyze an actual
experiment which shows that the interpretation pro-
posed above for the paradox of ERP is untenable. This
experiment shows that we cannot avoid the paradox
by assuming a breakdown of the quantum theory when
particles are far apart and do not interact. For the
case of the measurement of the spin of the two atoms
which originally formed a molecule of total spin zero,
the analogous result would be that there is definitely a
precise correlation of the value of any component of
the spin of atom A that we choose to measure with the
same component of the spin of atom 8, even in each
individual measurement.

Kith this fact in mind, we return to the problem of
interpreting the hypothetical experiment of KRP.
Clearly for this case, we can no longer retain the
notion that a definite value of a given variable is
essentially realized through interaction with an appro-
priate apparatus, and that the indeterminacy principle
represents only an uncontrollable fIuctuation in com-
plementary variables brought about by a disturbance
originating in the apparatus.

Two general types of solutions have been offered for
this problem.

First of all, Bohr' has proposed that the observing
apparatus plus what is observed form a single indi-
visible combined system not capable at the quantum-
mechanical level of being analyzed correctly into sepa-
rate and distinct parts. Each particular kind of
apparatus then forms with an electron for example, a
different kind of combined system, not subject to
comparison in detail with the system formed by the
electron and some other kind of apparatus. Bohr then
showed that one can consistently regard the quantum
theory as nothing more than a means of calculating the
probability of every observable result that can come
out of the operation of all possible combined systems
of different kinds of measuring apparatus with different
kinds of entities that are to be observed. This notion is
to be applied just as much to the observation of single-
particle systems as to that of many-particle systems.
Thus, our inability in principle to analyze in detail the
motions of the spins of our two atoms is not basically
different from our inability in principle to analyze in
detail the motion of a single electron in an atom. In all
cases we can only accept the total result that comes out
of a measurement and calculate its probability.

It is clear that in Bohr's point of view, no paradox
can arise in the hypothetical experiment of KRP. For
the system of two atoms plus the apparatus which is
used to observe their spins is, in any case, basically
inseparable and unanalyzable, so that the questions of
how the correlations come about simply has no meaning.
We can show that there is no inconsistency in the
quantum-mechanical conclusion that such correlations5¹Bohr, Phys. Rev. 48, 696 (1935); also Chap. 7 in Albert
Einstein, Philosopher Scientist, edited by P. A. Schilpp (The
Library of Living Philosophers, Inc. , Evanston, 1949).

exist, but there is, in this point of view, no way even
to raise the question of what is their origin.

The second general kind of idea which has been pro-
posed for understanding the meaning of the paradox of
KRP is along the lines of suggesting a deeper explora-
tion of the quantum theory as a whole. In this kind of
explanation, we agree with Bohr in treating the system
consisting of apparatus plus what is observed as a
single combined system; but we differ, in that we sup-
pose that this combined system is at least conceptually
analyzable into components which satisfy appropriate
laws. Two possible ways of doing this have been
suggested.

First, there is the so-called causal interpretation of
the quantum theory. ' This utilizes the idea already
mentioned in Sec. 1 of a hidden interaction between
distant particles. The hidden interaction is a new kind
of so-called "quantum potential" which implies the
possibility of a connection between distant particles
even when their classical interaction potential is zero.
It must be admitted, however, that this quantum
potential seems rather artificial in form, besides being
subject to the criticism of Sec. 1 that it implies instan-
taneous interactions between distant particles, so that
it is not consistent with the theory of relativity.

Secondly, there has been developed a further new
explanation of the quantum theory in terms of a
deeper subquantum-mechanical level. The laws of this
lower level are different from those of the quantum
theory, but approach these latter laws as an approxima-
tion, much as the laws of atomic physics approach
those of macroscopic physics when many atoms are
involved. Explanations of this kind will be published
later. ' It will be seen with the aid of this theory that
the paradox can be understood in a perfectly rational
way, in terms of a new notion of coordinated Quctua-
tions arising in the subquantum-mechanical level.

In sum, then, the quantum theory of the many-body
problem implies the possibility of a rather strange kind
of correlation in the properties of distant things. As we
shall see in the next section, experiments proving the
presence of this kind of correlation already exist. Any
attempt to interpret the quantum mechanics and to
understand its meaning must therefore take such cor-
relations into account.

3. EXPERIMENT VERIFYING THE
PARADOX OF ERP

While the paradox of KRP is most clearly expressed
in terms of the correlations of spins of a pair of atoms,
it is at present practicable to test it experimentally
only in the study of the polarization properties of cor-
related photons. Such photons are produced in the
annihilation radiation of a positron-electron pair. In

D. Bohm, Phys. Rev. 85, 166 (1952); 85, 180 (1952).
A general discussion of this problem is given in D. Bohm,

Causality ued Chance in Modern Physics (Routledg and Kegan-
Paul, Ltd. , London, 1957), see Chaps. III and IV.
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this process, two photons are given oB simultaneously,
with opposite momentum lpl =M (where k is the
wave number). As a simple calculation based on the
quantum theory of radiation shows, ' each photon is
always emitted in a state of polarization orthogonal to
that of the other, no matter what may be the choice of
axes with respect to which the state of polarization is
expressed. '

The most general state for a photon of wave number
k directed along the positive z axis is

p = rcpt.*go+scooA) (3)

Here fo is the ground state of the radiation field, the
C's are creation operators for photons polarized re-
spectively along the x and y axes, and the amplitude
factors r, s are normalized so that

4i=ci Co"Po,

Po=ci'Cogo,

A=ciocoVo,

f4 =CPcoofo.

(Sa)

(Sb)

The wave functions Pi and Po represent states of the
combined system in which each photon is excited in a
direction orthogonal to that of the other, while Po and

See W. Heitler, QNantlm Theory of Radiation (Oxford Uni-
versity Press, Oxford, 1954), third edition, p. 269.

'Snyder, Pasternack, and Hombostel, Phys, Rev. 63, 440
(&948}.

For circular polarization r = 2—
&, s= &2 'i, where the &

sign is chosen in accordance with whether the polariza-
tion is right-handed or left-handed, P~ or P . For a
linear polarization along a direction e that makes an
angle n with the x axis, we have r =cosa., s= sinn. Let a
beam so polarized be analyzed by an apparatus that
measures polarization along the x and y axes. The
polarization will be found to lie in the x direction with
the probability cos'n, and in the y direction with the
probability sin'o. .

This result has certain essential analogies to that of
the spin measurement discussed in the previous section.
For in both cases, we have a system that can be. in
one of two possible but mutually exclusive states. For
the spin, these possibilities correspond to positive or
negative spin in any chosen direction; and for the
photon, they correspond. to the two perpendicular
directions in which the radiation oscillator can be
excited. In both cases, when we analyze the wave
function in terms of eigenfunctions corresponding to
definite properties in some direction diferent from the
original, we obtain a statistical Quctuation in the
properties of interest.

I.et us now go on to the problem of the two photons
moving in opposite directions. For this case, we define
the creation operators C~', and C~& for the photon
moving in the direction +k and Co' and Coo for the
photon moving in the opposite direction. The radiation
field then has four possible wave functions

P4 represent states of the combined system in which
each photon is excited in the same direction as that of
the other. These relationships will, however, be valid
only for the particular system of axes xy that has been
chosen for the representation of the eigenstates of the
excitation energy of a single photon.

If the polarization along another set of axes (x'y')
is measured, one will not in general obtain the same
correlations in the directions of excitation of the
photons that was obtained in the original set of axes.
To show what actually happens for this case, we must
express the wave functions of (Sa) and (Sb) in a rotated
system of axes. We obtain

1//i (Ci*' cosn+Cio' sinn) (—Co*' sinn+Co"' cosu)fo

= —sinn coscnPo'+sinn cosniP4'+cos'~i' —sin'cgPo'. (6)

with similar expression for fo, Po, and f4 l for example,

fo is obtained by interchanging the indices 1 and 2

in Eq. (6)).
It is clear from the above equation that in a rotated

system of axes, the wave function/i no longer represents
(as it did in the original system) a state in which the
two photons have orthogonal directions of excitation.
Rather, we see that it is possible for these directions
either to be orthogonal or parallel.

As we pointed out in the beginning of this section,
however, the correct wave function for the experiment
under consideration must be such that the two photons
are excited orthogonally, no matter what the choice of
xy axes is. It is well known that such a function is
obtained by taking a suitable linear combination of our
starting functions. In this case, the correct linear
combination is

The above function still evidently represents orthogonal
directions of excitation for both photons. To see that
this property holds in every coordinate system (x'y'),
we need merely express pi, in a rotated system of axes.
We obtain, after a simple calculation,

1
0 i=—(Ci"Coo' —Ci"'Co*')fo.

Thus, the function, Pi, has the required property, and
Eq. (8) therefore constitutes the correct wave function
for this case.

The other possible linear combination of fi and fo
is the symmetric one

I 1
A = (g i+go) = (Ci*c—oo+ Ci "Co*)p—o.

W2 v2

As is well known, pi and Po are not mixed in a rotation,
because the rotation operates symmetrically on the
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in 0 plone perpendl'culor
to &he paper
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Case 1 Case 2

FIG. 1. Schematic representation of apparatus for
observing correlations between photons.

'0 For a more detailed discussion, see C. S. Wu, Phys. Rev. 77,
136 (1950),

wave functions of each photon. However, a similar
calculation shows that on rotations, g2 leads to a linear
combination of p2', 1"~', and 1"4', so that a pair of photons
in a state corresponding to @2 will not have orthogonal
excitations in another system of axes (x'y').

The wave function (7) for a pair of photons evidently
resembles the wave function (1) for the spins of a pair
of electrons. In both cases, we form a special linear
combination of product wave functions, which guaran-
tees that the two particles will be in opposite states,
iu relation to a group of rotated coordinate frances. In
both cases, then, we have essentially the same puzzling
kind of correlations in the properties of distant particles,
in which the property of any one photon that is de6nite
is determined by a measurement on a far-away photon.
Thus, the paradox of ERP can equally well be tested by
polarization properties of pairs of photons.

As in the case of spin, the definite phase relations
with which 1'i and f2 are combined lead, not only to
correlations of the type described, but also to detailed
conservation of the total angular momentum, for each
individual case.

The experiment that we shall discuss here is aimed
at testing whether there really is a correlation in
polarization directions of the type described in the
foregoing. The ideal way to test this point would be to
measure the polarizations of each member of a statistical
ensemble of pairs of photons produced by positron-
electron annihilation; and to see whether the polariza-
tions are always perpendicular in every system of axes,
as predicted by the theory. But this is not yet possible
in practice. Nevertheless, there has been done an
experiment which, as we shall see, tests essentially for
this point, but in a more indirect way. This'."'experi-
ment" consists in measuring the relative rate, E, of
coincidences in the scattering of the two photons
through some angle, 8, for the following two cases:

(1) When the planes ~&, and m.2 formed by the lines
of motion of the scattered quantum and the original
direction are perpendicular (y=90', where y is the
angle between the planes).

(2) When the planes are parallel (p=0).

These cases are illustrated in Fig. 1. The photons
originate at the point, 0.

In the first case, photon 1 is scattered by an electron
in a block of solid matter at the point A, through some

angle, 8 which we take to be in the plane of the paper.
Photon 2 is similarly scattered at the point, 8, through
the same angle, 0, but in a plane perpendicular to that
of the paper. In the measurement, 0 is 6xed, and one
counts the coincidences of photons. In case (2), the
experiment is the same, except that both photons are
scattered in the plane of the paper.

%e shall then consider the computation of the ratio,
R, on the basis of two diferent hypotheses:

(A) The usual quantum theory is correct in all cases,
so that as we have shown before the wave function is
given by the antisymrnetric combination p&=(1/~2
X (1'i—6). Pe«q. (7).j

(8) The usual quantum theory is correct only when
the wave function of the photons overlap (or else when
the photons interact appreciably). When the photons
have separated sufTiciently (as in the case of the experi-
ment that we are considering) we suppose that the
wave function is no longer a superposition such as (7),
having definite phase relations of its components, which

imply, as we have seen, the ERP type of correlations
and a definite total angular momentum. Instead, we
shall suppose that each photon goes into some definite
state of polarization, which is de6nitely related to that
of the other; and in order to obtain symmetry in the
final statistical results, we shall suppose, wherever
necessary, that there is a uniform statistical distribution
over any direction that may be favored in each indi-
vidual case. In order to bring out the consequences of
such a hypothesis for the experiment under considera-
tion, we shall consider here two extreme cases:

(1) Each photon becomes circularly polarized about
its direction of motion, but the two photons are op-
positely polarized.

(2) Each photon goes into a state of linear polariza-
tion in some direction, while the other goes into a state
of perpendicular polarization. Over many cases, one
obtains the same probability for an arbitrary direction
of polarization of any one of the photons. (It is evident
that for the hypothesis 8, the combined angular
momentum would not be conserved in individual
processes, but as we have indicated in the previous
section, the fact that it is conserved on the average
would be all that is needed to fit the experiments that
are available to date. )

To carry out the calculations needed to compare
these suggested theories with the experiment, we shall
cite the scattering cross section of a single photon from
an electron; first for the case in which its initial po-
larization direction is parallel to the plane m (containing
its initial direction of motion and its direction after
scattering) and secondly, for the case in which its
initial polarization direction is perpendicular to
According to the Klein-Nishina formula, these proba-
bilities" (which have been summed over the final
polarization directions of the photon, and the final spin

"gee W. Heitler, reference 8, p. 217,
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TABLE I. Relative probability of coincidences in the Compton scattering of annihilation photons for the two geometries of Fig. 1.

Hypothesis
Scattering probability dZ divided by (ro4/8) (dQ)2(k4/k04)

2r& parallel ~2 2r1 perpendicular 7r2

Ratio R =dZg/dZl[
For ideal Average for ex-

angle perimental solid
82 angle

A (standard)
B1 (product of states of opposite

circular polarization) '
B2 (product of states of perpendicular linear

polarization, randomized directions)
B; t, (intermediate case of elliptic

polarization)
Observation (reference 10)

(2y' —4y sin%+ sin40)

Intermediate between B1 and B2

(2~P —4ys sinsS+3 sino)

2p(y —2 sin'S) (y —2 sin'S)'+y'
dZ unaftected by orientation of 2r& relative to m.

&

2.85
1.00

(2

2.00
1.00

&1.5

2.04~0.08

a Equal probability for X1 =p+(1)$ (2) and for X2 =f {1)p+(2).The correct wave function according to standard quantum theory is 2 &(X& —X2).

do s ——-', rp'dQ (k'/kp') y, (10b)

where y= (kp/k)+ (k/kp), kp is the wave number of the
incident photon, k that of the Qnal photon, ro is the
classical electronic radius, and dQ is the element of
solid angle.

Ke can now apply these results to our problem, in-
volving two photons going in opposite directions. For
the general case, the wave function before scattering
must, in such a problem, be a linear combination of
the four possibilities,

4

k=2 &4',

where the P; are defined in Eqs. (5a) and (5b).
It is evident then that the scattering cross section

for two photons will depend on the a;. In general, we
would expect that the probability of such scattering
would contain cross terms such as u;a; where i/ j.
For the special case of the experiment that we are
considering (i.e., the planes xt and s.s are either parallel
or perpendicular), it can be shown, ' however, that if we
choose the x axis in the plane m associated with either
one of the photons (and the y axis perpendicular to this
plane), then all such cross terms will drop out from the
expression for the probability of scattering. Kith this
choice of axes, then, we can compute the probability
of scattering of two photons for an arbitrary state of
the system in Eq. (11) by computing it separately for
the four cases, P; and multiplying the result of each
computation by the probability of this case, (~a, ~').
For each case, P;, however, this probability reduces to
just the product of the probabilities of scattering of the
single photons.

Calculating the scattering probabilities as just out-
lined, we obtain the results summarized in Table I.

The results in Table I show that this experiment is
explained adequately by the current quantum theory
which implies distant correlations, of the type leading
to the paradox of KRP, but not by any reasonabl

directions of the electron, and averaged over the initial
spin direction), are, respectively,

do t=-', rp'dQ(k'/kp') (y —2 sin'0), (10a)

hypotheses implying a breakdown of the quantum
theory that could avoid the paradox of ERP.

APPENDIX. TREATMENT OF ERP PARADOX FOR
CONTINUOUS VARIABLES

In this Appendix, we shall discuss the paradox of
ERP, as applied to continuous variables. We shall see
that with such variables, it is very dificult to obtain a
clear experimental test for this paradox, thus showing
that the best way of making such a test is with dis-
crete quantities, such as spin of electrons or polarization
of photons.

Ke may take as a typical example a case similar to
one already discussed by Furry, ' namely, an experiment
in which one particle is scattered on another. To avoid
questions of identity, we suppose that the two particles
are diferent.

If particle 1 is initially at rest, and particle 2 has
initially the definite momentum, P, the wave function
for the system is then"

( rr+ rs
exp( iP )F(rr rs), —

)
where

( P. r)
F(r) =exp~ i (+ g(8).

& k)
In principle, we can measure Ps after scattering, and

we know from conservation of momentum that Pi
=P—Ps. But we also have the alternative possibility
of using a suitable lens to bring particle No. 2 to a
focal point; and from this, we can deduce where the
point of scattering was, and therefore where particle 1

was at the time of scattering. . Thus, by measurements
made solely on complementary properties of particle 2,
we can determine the corresponding properties of
particle t. , without any interaction between the particles
or between the observing apparatus and particle 1.

In order to avoid for this case the paradox of ERP in
a manner analogous to what was suggested for spin and
polarization in Secs. 2 and 3 respectively, we could
assume that after the particles which have scattered on

"P, Bohm, reference 3, Chap. 21, Sec, 24t
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each other separate sufficiently, the wave function
breaks up into narrow wave packets. There would be a
small indeterminacy, 20 in the angles of these packets
and a corresponding indeterminacy, APO in the mo-
mentum in the 0 direction. The wave function would
be lb(ri, rs)=f~(ri)fs(rs) where f~ and fzz represent
packets whose centers move in accordance with the
assumptions given above.

Ke then assume a statistical distribution in the mean
directions of these packets, weighted in such a way as
to give the usual probability of scattering as a function
of angle. Thus, from measurements of the scattering
cross section as a function of angle, one could not dis-
tinguish between the theory and the usual quantum
theory.

In such a statistical distribution over p'encils of
directions, the total momentum is not conserved ex-
actly Las is evident from the Fourier analysis of a
function, such as f(ri) f(rs)$. But because we can choose
68 small compared with macroscopic dimensions and
yet so large that DPO is negligible, this very small failure

of detailed conservation of momentum would be too
small to have been detected in experiments that have
been possible to date (of course momentum would still
be conserved on the average). Thus, to test for the
paradox of ERP in this case, one needs extremely ac-
curate measurements of the momentum of both par-
ticles before and after scattering.

At first sight, it might seem that one could dis-
tinguish between the two theories by trying to demon-
strate interference of the scattered wave of a single
particle, in order to show that the wave covers the
whole range of angles without being broken into partial
waves of width 60. But this is not possible, because, as a
simple calculation shows, interference phenomena will
cancel out for a single particle (i.e., when one averages
over the coordinates of the other particle). Irzterference
izz space can be obtained only if the positions of both par
ticles are observed toith great precision; and as in the
case of testing the detailed conservation of momentum,
the experiments available to date are not accurate
enough to distinguish between the two theories.
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Parity Nonconservation and the Group-Space of the Proper Lorentz Group
E. J. ScrraEMP

nucleonics Division, United States guava/ Research Laboratory, Washington, D. C.
(Received July 1, 1957)

As a means of incorporating isotopic spin into the foundations of the theory of spin —, particles, a slight
modification of the free-particle Dirac equations has previously been proposed which follows from a con-
sideration of the group-space of the proper Lorentz group. Further considerations of the group-space
suggest two additional modifications which may contribute, in a mutually complementary way, toward
establishing a new symmetry principle applicable to parity-nonconserving interactions.

' 'N a recent note, ' there was indicated a natural and
.. irreducible way of incorporating isotopic spin into
the foundations of the theory of spin ~ particles. For
that purpose, the solutions lb~ of the Weyl form of the
free-particle Dirac equations, '

G„ip~+i(znc/A)f+ =0, (1)
where

6~=ear)/r)x'Wi (e,8/r)x'+ esr)/r)x'+ ezr)/Bx'), (2)

and eo, e&, e2, es are the quaternion units in a 2X 2 matrix
representation, were considered to be a pair of general
complex quaternions, rather than the usual pair of
2-component spinors. The resulting 8-component spinor
wave function lt ~ was then taken to represent the super-
position of two different states of isotopic spin —„with
the respective 4-component spinor wave functions

P~=P+(e,+ze,)/2, (3a)

4~ =4~(es—ie,)/2. (3b)
' E. J. Schremp, Phys. Rev. 99, 1603 (1955).
~ H. Weyl, The Theory of Groups and Quantuns Mechanics (E.P.

Button and Company, Inc. , New York, 1931),p. 213, Eqs. (5.6).

The present note deals with two further modifications
of Eqs. (1), suggested, as the previous one was, by
considerations of the group space of the proper L-orentz
group. ' These modifications are: (A) that the original
2X2 matrix representation of the quaternion units
eo, e&, e2, e3 be replaced by a regular 4&(4 matrix repre-
sentation'; and (B) that the differential operators Cl+
be replaced by e+"I'Q+, where p, is a real parameter. '

Through modification (A), which effects the simpli-
6cation' Q +~= Q+, the mutual symmetry of the
operators e+"&Qg becomes subsumed under the opera-

3 E. J. Schremp, Bull. Am. Phys. Soc. Ser. II, 2, 191 (1957).
4 E. J. Schremp, Naval Research Laboratory Quarterly Report,

January 1956 (unpublished), pp. 6-13.' E.J. Schremp, Naval Research Laboratory Quarterly Reports,
July 1956 (unpublished), pp. 17—20, and January 1957 (un-
published), pp. 9—17. In these reports, as also in the present paper,
p is understood to be a function of the space-time coordinates
x, x', x2, x'. The special case p=constant is equivalent to a
proposal just recently made, with a similar physical objective in
view, by K. Nishijima, Nuovo cimento 5, 1349 (1957).

6 In taking the complex conjugate, denoted by the superscript
C, it is here understood that the quaternion units e(), e&, e2, e3 are
real, in accordance with modiacation (A).


