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1 Introduction

Local continuous transformations were introduced by Lie as a tool for solving ordinary differential
equations. In this program he followed the spirit of Galois, who used finite groups to develop
algorithms for solving algebraic equations (the general quadratic, cubic, and quartic), or else to
prove that some equations (the generic quintic) could not be solved by quadrature.

Lie’s work lead eventually to the definition and study of Lie groups. Lie groups are beautiful in
their own right — so beautiful that they have been studied independently of their origin as a tool
for solving differential equations and studying the special functions determined by certain classes of
these equations.

2 Lie Groups

Lie groups exist at the interface of the two great divisions of mathematics: Algebra and Topology.
Their algebraic properties derive from the group axioms. Their geometric properties arise from the
parameterization of the group elements by points in a differentiable manifold. The rigidity of these
structures arises from the continuity requirements imposed on the group composition and inversion
maps.

The algebraic axioms are standard.

Definition: A group G consists of a set g;, g5, g, - . - € G together with a combinatorial operation
o that satisfy the four axioms

1. Closure: If g; € G, g; € G, then g; 0 g; € G.
2. Associativity: If g;, g;, gr € G, then (g; 0 g;) o gr = 9i ° (9j © gr)-
3. Identity: There is a unique operation e € G that satisfies e o g; = g; = g; o e.

4. Inverse: Every group operation g; € G has an inverse, denoted g; ! that satisfies g; o 9; 1=
-1
€=9; ©°3gi-

Lie groups have more structure than groups. In particular, each g; € G is a point in an n-
dimensional manifold M™. That is, the subscript ¢ actually identifies a point x € M™, so that we
can write g; = g(z) or most simply g; = z. The group multiplication can be expressed in the form
9i0g; = gr = 9(z) o g(y) = g(z), where x € M™, y € M", z = ¢(x,y) € M™. The group inversion
map can be expressed in the form g(z) — g(z)™! = g(y), y = ¥(x) € M™. The topological axioms
for Lie groups can be taken as

5. Continuity of Compositon: The mapping z = ¢(x,y) defined by the group composition
law is differentiable.



6. Continuity of Inversion: The mapping y = v¢(z) defined by the group inversion law is
differentiable.

The dimension of the Lie group is the dimension of the manifold that parameterizes the operations
in the group.

The most familiar examples of Lie groups consist of n x n nonsingular matrices over the fields
R, C, @ of real numbers, complex numbers, and quaternions. For example, the set of 2 x 2

real unimodular matrices [ Ccl Z ], ad — bc = 1, is a three-dimensional submanifold embedded in

R?’ = R%.

3 Matrix Lie Groups

Not every Lie group is a matrix group. Yet it is a surprising and useful result that almost every Lie
group encountered in Physics is a matrix Lie group. These are all subgroups of the General Linear
groups GL(n; F) of n X n nonsingular matrices over the field F' (R, C, Q). These groups have real
dimension n? x (1, 2, 4), respectively. The special linear subgroups SL(n; F) are defined as the
subgroups of n x n matrices with determinant +1: M € SL(n; F) if det M = +1. This definition
is problematic for quaternions, as they do not commute. To avoid this problem, it is useful to map
quaternions into 2 X 2 complex matrices in the same way complex numbers can be mapped into 2 x 2
real matrices:

qo +1ig3 iq1 — @2

. a b
a+ib— +Tq + + Kqs = | .
[ —b a ] 0 @+ Je % tg1 +q2 Qo — iq3

Here (1,4) are basis vectors for C! considered as a real two-dimensional linear vector space, (1,7, J,K)
are basis vectors for Q' considered as a real four-dimensional linear vector space, and (a,b) and
(g0,41,92,q3) are all real. The squares of the imaginary quantities ¢ and Z,J,K are all —1:
i? = —-1; 72 = J?2 = K2 = —1 and the imaginary quaternion basis elements anticommute:
{Z,J} = {J,K} = {K,Z} = 0. The unimodular subgroup SL(n;Q) of GL(n;Q) is obtained
by replacing each quaternion matrix element by a 2 x 2 complex matrix, setting the determinant of
the resulting 2n x 2n matrix group to +1, and then mapping each of the n? complex 2 x 2 matrices
back to quaternions.

Many other important groups are defined by imposing linear or quadratic constraints on the
n? matrix elements of GL(n; F) or SL(n; F). The compact metric preserving groups U(n; F') leave
invariant lengths (preserve a positive-definite metric g = I,,) in linear vector spaces. The matrices
M € U(n; F) satisfy MTI, M = I,,. These conditions define the orthogonal groups O(n) = U(n; R)
and the unitary groups U(n) = U(n;C). Their noncompact counterparts O(p,q) and U(p, q) leave
I

0 .
in real and complex n = p + ¢
0 -

invariant nonsingular indefinite metrics g = I, , = [

dimensional linear vector spaces: M1, M =1, ,.

Intersections of matrix Lie groups are also Lie groups. The special metric preserving groups are
intersections of the special linear groups SL(n; F) C GL(n; F) (with F = @, SL(n; Q) is defined as
described above) and the metric preserving subgroups U(n; F) C GL(n; F):

SL(n;R) N U(n;R) = S0O(n) n(n —1)/2
SL(n;C) N Un;C) = SU(n) n? -1
SL(n;Q) N Um;Q) = Sp(n)=USp(2n) n(2n + 1)



The real dimensions of these groups are given in the right hand column. Under the replacement
of quaternions by 2 x 2 complex matrices, the group of n X n metric preserving and unimodular
matrices Sp(n) over @ is identified as USp(2n), an isomorphic group of 2n X 2n matrices over C.

Noncompact forms SO(p, q), SU (p,q) and Sp(p, q) = USp(2p, 2q) are defined similarly.

The Lie group SU(2) rotates spin states to spin states in a complex two-dimensional linear
vector space. It leaves lengths, inner products, and probabilities invariant. If an interaction is spin
independent only an invariant (“Casimir invariant”) constructed from the spin operators can appear
in the Hamiltonian. The same group can act in isospin space, rotating proton to neutron states. The
Lie group SU(3) similarly rotates quark states or color states into quark states or color states. The
Lie group SU(4) rotates spin-isospin states into themselves. The conformal group SO(4,2) leaves
angles but not lengths in space-time invariant. It is the largest group that leaves the source-free
Maxwell equations invariant. It is also the largest group that transforms all the (bound, scattering,
parabolic) hydrogen atom states into themselves.

Lie groups such as the Poincaré group (inhomogeneous Lorentz group) and the Galilei group
have the matrix structures

Poincaré Group Galilean Group
tl Xz (%] tl Xz
to Yy 0(3) V2 to Yy
0(371) t3 z V3 t3 z
t4 ct 0 0 0 1 t4 t
0 00O | 1 1 0 00 0 1 1

In these transformations t = (t1,t2,t3) describes translations in the space (z-, y-, and 2z-) direc-
tions, v = (v1,v2,v3) describes boosts, and ¢4 resets clocks. The matrices in these defining matrix
representations are reducible.

The Heisenberg group Hy is a four dimensional Lie group with a simple 3 x 3 matrix structure

1 1 d
Heisenberg Group=H;, = | 0 n r n # 0.
0 0 1
This matrix representation of H, is faithful but nonunitary.

4 “Linearization” of a Lie Group

At the topological level a Lie group is homogeneous. That is, every point in a manifold that
parameterizes a Lie group looks like every other point. At the algebraic level this is not true — the
identity group operation e is singled out as an exceptional group element. At the analytic level the
group composition law z = ¢(x,y) is nonlinear, and can therefore be arbitrarily complicated.

The study of Lie groups is enormously simplified by exploiting these three observations. Specif-
ically, it is useful to linearize the group multiplication law in the neighborhood of the identity. The
linearization leads to a local Lie group. This is a linear vector space on which there is an additional
structure. Once the local Lie group properties are known in the neighborhood of the identity, they
are known everywhere else in the group, since the group is homogeneous.

A Lie group is linearized in the neighborhood of the identity by expressing an operator near the
identity in the form g(e) = I 4+ €X, where the local Lie group operator eX = §z2¢X;, the X; are n
linearly independent vector fields on the manifold M™, and the small coordinates dz¢ measure the



distance (in some rough sense) of g(e) from the point that parameterizes the identity group operation
e = g(0). For another group operation g(dY) = I + 0Y in the neighborhood of the identity

(i) The product g(eX)g(dY) = (I +eX)(I+0Y) =1+ (eX + §Y)+(h.o.t) is in the local Lie group.

ii) The commutator g; o g; 0 g; L o g; ! in the group leads to
J i 7 g

9(eX)g(8Y)g(eX)"1g(8Y)"" = I + %e& (XY — YX)+hot =1+ %eé [X, Y]+ hot

in the local Lie group.

The first condition shows that the local Lie group is a linear vector space. The n vector fields
X; can be chosen as a set of basis vectors in this space.

The second condition shows that the commutator of two vectors in this linear vector space is
also in this linear vector space. The commutator endows this linear vector space with an additional
combinatorial operation (“vector multiplication”) and provides it with the structure of an algebra,
called a Lie algebra.

Definition: A Lie algebra [a consists of a set of operators X, Y, Z,..., together with the op-
erations of vector addition, scalar multiplication, and commutation [X, Y] that satisfy the following
three axioms:

1. Closure (linear vector space): If X, Y € la, aX 4+ 8Y € la and [X,Y] € la.
2. Antisymmetry: [X,Y] = - [V, X].
3. Jacobi Identity: [X,[Y, Z]] +[Y,[Z, X]] + [Z,[X,Y]] = 0.

The structure of a Lie algebra, or local Lie group, is summarized by the structure constants,
defined in terms of the basis vectors X;, by

[Xi, X;] = ¢;; Xy, summation convention

k

The structure constants c;;” are components of a third order tensor, covariant and antisymmetric
ko

in two indices (c;;* = —c]-,-k) and contravariant in the third. These components obey the Jacobi
identity, which places a quadratic constraint on them:

s t s t s t __
Cij Cs + Cip Coi F Cpy Cg5 =0

Linearization of a Lie group generates a Lie algebra. A Lie group can be recovered by the inverse
process. This is the exponential operation. A group operation a finite distance from the origin (the
point identified with the identity group operation) of the manifold that parameterizes the Lie group
can be obtained from the limiting procedure (e = 1/K — 0):

. 1\ &
g(X)—Klgnoo <I+ EX) =e* = EXP(X)
The exponential operation is well defined for real numbers, complex numbers, quaternions, n X n
matrices over these fields, and vector fields.

A 1:1 correspondence between Lie groups and Lie algebras does not exist. Isomorphic Lie groups
have isomorphic Lie algebras. But nonisomorphic Lie groups may also possess isomorphic Lie al-
gebras. The best known examples of nonisomorphic Lie groups and their isomorphic Lie algebras
are



Simply connected

Lie group
SG
o~ N
32
: TEl |®
Multiply 3 | &
connected = ‘E
Lie EZA (S6/Dy[§ |[S + ¢ o [som
L
£
Linearization \ Sy
“LOG” (unigue) Lie
algebra,
]

Figure 1: Cartan’s theorem states that there is a 1:1 correspondence between Lie algebras and simply
connected Lie groups. All other Lie groups with this Lie algebra are quotients of the covering group
by one of its discrete invariant subgroups D; C Dyax. There is a relation between the discrete
invariant subgroup D; and the homotopy group of SG/D,;. Reprinted with permission from R.
Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, NY: Wiley, 1974.

SO@3) # SU(2) s0(3) = su(2)
SO(4) # SU(2) x SU(2) so(4) = su(2)+su(2)
S0(5) # Sp(2) =USp(4) s0(5) = sp(2) =usp(4)

There is a 1:1 correspondence between Lie algebras and locally isomorphic Lie groups. This has been
extended to global Lie groups by a beautiful theorem due to E. Cartan.

Theorem (Cartan): There is a 1:1 correspondence between Lie algebras and simply connected
Lie groups. Every Lie group with the same Lie algebra is either the simply connected (“universal
covering”) group or is the quotient of this universal covering group by one of its discrete invariant
subgroups.

This relation is summarized in Fig. 1.

As a concrete example, the Lie algebra of SO(3), which is the group of real 3 x 3 matrices
satisfying MtIsM = I3 and det(M) = +1, is spanned by the three “angular momentum vector
fields” L;(z) = €;jx2? 0 or the three angular momentum matrices

0 0 0 0 0 -1 0 +1 0O
L1 = Lays = 0 0 +1 Lo =1L3 =—IL13= 0 0 0 Ly=1Lqiy = -1 0 0
0 -1 0 +1 0 O 0 0 0

The Lie group SU(2) is the group of complex 2 x 2 matrices satisfying M tLM = I, and det(M) =
+1. Tts Lie algebra is spanned by the three spin matrices S; = 50, which are multiples of the Pauli
spin matrices o;

i 0 41 _i[ o0 —i _i[+1 0
Sl‘§[+1 0] S2_2[+i o] 53_2[0 —1]

The two Lie algebras are isomorphic as they share isomorphic commutation relations [J1, Jo] = —J3
(and cyclic), J; = L; or J; = S;. The group SU(2) is simply connected. Its maximal discrete



invariant subgroup D consists of all multiples of the identity, als, so that @ = +1. According to
Cartan’s theorem SO(3) = SU(2)/Da, Dy = {I2,—I>}. The group SO(3) is doubly connected, with
a two element homotopy group.

5 Matrix Lie Algebras

A deep theorem of Ado guarantees that every Lie algebra is equivalent to a matrix Lie algebra, even
though the same is not true of Lie groups.

Sets of n x n matrices that close under vector addition, scalar multiplication, and commutation
(M, € la, My € la = [My, My] = My My — MyM; € la) form matrix Lie algebras. The antisymmetry
properties and Jacobi identity are guaranteed by matrix multiplication.

Lie algebras for the general linear groups GL(n; F') consist of n x n matrices over F. Lie algebras
for the special linear groups SL(n; F) consist of traceless n x n matrices. The Lie algebras of the
unitary groups consist of antihermitian matrices. The Lie algebras of U (p, ¢; F') consist of matrices
that obey

MTIp,q+Ip,qM =0 M € u(p,q; F)

The matrix Lie algebras of other matrix Lie groups are obtained by constructing the most general Lie
group operation in the neighborhood of the identity by linearization. For example, the Lie algebra
of the Heisenberg group Hj is

1 1 d 1 6l éd

On r|—=>|0 1+ 6r | 2L+nN+dr R+6l L+d6dD

0 0 1 0 0 1
N ~ata R ~al L~a D ~ I = [a,al]
0 0 0 0 0 0 010 0 01
01 0 0 01 0 0 O 0 0 0
0 0 0 0 0 0 0 0 O 0 0 0

The four 3 x 3 matrices N, R, L, D that span the Lie algebra b4 of Hy satisfy commutation relations
isomorphic with the commutation relations satisfied by the photon operators (ata,at,a,I = [a,al]).
The 3 x 3 matrix representations of the group Hy and the algebra b, are faithful. The representation
of Hy is nonunitary and that of h4 is nonhermitian.

There is a simple way to relate a large class of operator Lie algebras to matrix Lie algebras. If
A, B,C,... belong to a Lie algebra of n x n matrices, the matrix-to-operator mapping

A= A=2'A79;
preserves commutation relations, for
[A,B] = [+14,79;,27B,*0,| = a' A [0;,27] B,0, — 2" B,* [0s,5"] A78; =
o'A’B;*8, —2"B,'A’8; =2'[A,B];’ 9; =C

This relation depends on the bilinear products z'9; satisfying commutation relations



[2°0;,2"0,] = £'0,0;" — 79;6,’
These commutation relations are satisfied by products of creation and annihilation operators a}Laj
for either bosons (b;.rbj) or fermions ( f;r f;)- These matrix-to-operator mappings can be extended
to include bilinear products such as z‘z?,z'0;,0;0; and their boson and fermion counterparts
a;a;, a;f aj, a;f a;r.. For example, the vector fields associated with the operator J; for SO(3) and SU(2)

are z(L1);/8; = 2205 — 2302 and ui(S)),/0; = L(u'ds +u?dy).

Boson and fermion bilinear products ala; (1 < i,j < n) are isomorphic to u(n). Boson bilinear
products b;b;, b;!bj, b}b} are isomorphic to usp(2n) while fermion bilinear products f;f;, fiT fi, f;' f}
are isomorphic to so(2n).

6 Structure of Lie Algebras

The study of Lie algebras is greatly facilitated by studying their structure. The structure is deter-
mined by the commutation properties of the Lie algebra.

Invariant subalgebra: If a Lie algebra has an invariant subalgebra, then the commutator of
anything in the algebra with anything in the subalgebra is in the subalgebra. Suppose a is a linear
vector subspace of g. If [g,a] C a then a is an invariant subspace of g. In particular [a,a] C a and a
is therefore also subalgebra of g: it is an invariant subalgebra in g.

Example: The Lie algebra iso(3) consists of the three rotation operators L;; = 2'9; — 278; and
the three displacement operators P, = O;. The subset of displacement operators is an invariant
subspace in is0(3), since it is mapped into itself by all commutators. It is also a subalgebra in is0(3).
This particular invariant subalgebra is commutative.

Solvable algebra: If g is a Lie algebra, the linear vector space obtained by taking all possible
commutators of the operators in g is called the derived algebra: [g,g] = g C g. If g = g there
is no point in continuing this process. If g(t) C g, it is useful to define g = g(® and to continue
this process by defining g(?) as the derived algebra of g(V): g® = [g(),g()]. We can continue in
this way, defining g(»*1) as the algebra derived from g(™). Ultimately (for finite dimensional Lie
algebras) either g1 = 0 or g(»*Y) = g(*) for some n. If the former case occurs:

the Lie algebra g(©) is called solvable. Each algebra g(¥) is an invariant subalgebra of g, i > j.
Example: The Lie algebra spanned by the boson number, creation, annihilation, and identity
operators is solvable. The series of derived algebras has dimensions 4, 3, 1, 0.

g©@ g @ B

da = = =
o ot -
a a - -
I 1 1 -

Semidirect sum algebra: When a Lie algebra g has an invariant subalgebra a, the linear
vector space of the Lie algebra g can be written as the direct sum of the linear vector subspace of
the subalgebra a plus a complementary subspace b. The subspace b is generally not itself a Lie



algebra. The Lie algebra g is written as a semidirect sum of the two subspaces. The semidirect sum
structure satisfies the commutation relations shown:

[b,b] C bAa
g=bAa [b,a] C a
[@,a] C a

The subspace b can be given the structure of an algebra by modding out the component of the
commutator in a: b = g mod a.

Example: The three dimensional Lie algebra spanned by the photon operators af,a, I has a
semidirect sum decomposition where b is spanned by a', a and a is spanned by I. The subspace b is
not closed under commutation, and a is commutative. The Lie algebra iso(3) also has the structure
of a semidirect sum, with b = b = 50(3) and the invariant subalgebra a is spanned by the three
displacement operators P.

Nonsemisimple algebra: A Lie algebra is nonsemisimple if it has a solvable invariant subal-
gebra.

Example: The Lie algebra spanned by bilinear products of photon creation and annihilation
operators a}Laj, creation operators a;r, annihilation operators a;, and the identity operator I (1 <
i,j < m) is nonsemisimple. The solvable invariant subalgebra is spanned by the 2n + 2 operators
consisting of the single photon operators a;r, aj, the identity operator I, and the total number
operator i = 1, agai.

Semisimple algebra: A Lie algebra is semisimple if it has no solvable invariant subalgebras.

Example: The Lie algebra so(4) is semisimple. This Lie algebra has two invariant subalgebras,
both isomorphic to s0(3). The direct sum decomposition

s0(4) = s0(3) +50(3)

is well known to physical chemists and is responsible for the dualities that exist between rotating
and laboratory frame descriptions of molecular systems.

Simple algebra: A Lie algebra is simple if it has no invariant subalgebras at all. The prettiest
page in the theory of Lie groups is the classification theory of the simple Lie algebras. We turn to
this subject now.

7 Lie Algebra Tools

Two powerful tools have been developed for studying the structure of a Lie algebra. These are the
regular representation and the Cartan-Killing form.

7.1 Regular Representation

This representation assigns the structure constants to a set of n n x n matrices according to

Xo = R(Xa),” = cqps [Xo, Xpu] = cop Xo
The matrices of the regular representation contain exactly as much information as the components
of the structure tensor. They can be studied by standard linear algebra methods. For example, a
secular equation can be used to put the commutation relations into canonical form.

The structure of the matrices of the regular representation determines the structure of the Lie
algebra. The identification is carried out according to the usual rules of representation theory, as
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Figure 2: When the regular matrix representation of a Lie algebra is reducible, fully reducible, or
irreducible the Lie algebra is nonsemisimple, semisimple, or simple.

shown in Fig. 2. If a basis X, can be found in which all the matrices of the regular representation are
simultaneously reducible, the algebra possesses an invariant subalgebra. If the representation is not
fully reducible, the invariant subalgebra is solvable. If the regular representation is fully reducible,
the algebra consists of the direct sum of two (or more) smaller, mutually commuting subalgebras.
If the regular representation is irreducible, the algebra is simple.

If a Lie algebra is solvable (solb) all matrices in the regular representation can be transformed to
upper triangular matrices. If the Lie algebra is nilpotent (nil C solp) the diagonal matrix elements
in the upper triangular matrices are zero. The converses are also true.

7.2 Cartan-Killing Form

The Cartan-Killing form is a second order symmetric tensor that is constructed from the third order
antisymmetric tensor c,,, by cross contraction

Jap = Ca:cﬁrﬁt = gpa =1tr R(XG)R(Xﬁ) = (XOUXB) = (XﬁaXa)

The metric go5 can be used to place an inner product (X,,Xg) on this linear vector space. This
inner product is not necessarily positive definite.

The matrix gos can also be treated by standard linear algebra methods. Since it is real and
symmetric, it can be diagonalized. If there are n_ negative eigenvalues, n, positive eigenvalues,
and ng vanishing eigenvalues (n = n_ +ny4 + ng), the Lie algebra has a corresponding linear vector
space decomposition of the form

g=9-t8++ 0o

The inner product is positive definite on the subspace g, and negative definite on g_. We call go the
singular subspace. The subspace gg is closed under commutation and in fact is a nilpotent invariant
subalgebra of g.

8 Decomposition of Lie Algebras

The most general Lie algebra g is the semidirect sum of a semisimple Lie algebra ss and a solvable
invariant subalgebra solv.



[ss, 58] = 5§
g = 55 A solb [ss, s0lv] C solo
[solv,s0lb] C solv

The decomposition of g into its component parts is accomplished by a simple two-step algorithm.

1. Compute the Cartan-Killing metric for g and determine the singular subspace. If there is
none, stop. If the dimension of g¢ is greater than 0, nil = g¢ is the maximal nilpotent invariant
subalgebra of g.

2. Compute the structure constants of the Lie algebra g’ = g — nil = g mod nil = g/nil, the
Cartan-Killing metric tensor on g, and the decomposition g’ = gl, + gl+ + gb. Then a = ga is abelian
and invariant in g’. In fact, a is the largest abelian invariant subalgebra in g'.

The algorithm stops here, for the algebra g = g mod a = g'/a = g_ + g'+ has no singular
subspace under its Cartan-Killing metric.

Under this algorithm the decomposition of g into its semisimple part and its maximal solvable
invariant subalgebra is

o= (g +3\) A (s0n00)

The maximum solvable invariant subalgebra solv in g is the semidirect sum of a and nil: solb = g;J/\
go = a A nil. In addition, ss = g mod solv = g/solo = gl, + g'+. The subspace gL is closed under
commutation and exponentiates into a compact subgroup of G'. The subspace g'+ exponentiates to
a noncompact coset in G’ that is simply connected.

Every element in a semisimple Lie algebra can be expressed as the commutator of two elements
in the Lie algebra. In this sense a semisimple algebra reproduces itself under commutation.

To illustrate this algorithm we tear apart the eight dimensional Lie algebra spanned by the photon
1.

operators a;a;, 1 < 4,5 < 2 and agag,a;,ag,l, where the photon operators obey [ai,a;] = §;;1.

The regular representative of the general linear combination

X = Zm,-ja;-raj +nalas + ral + lag + 61 is
ij
I 0 —MmMi9 mao1 T a%al
0 mi2 —M21 a50a2
—Mo1  M21  +Mi1 — Ma2 0 al{ag
M2 —Mi2 0 —Mm11 + Ma2 ala
R(X) = 5 2
L o
n

a

-n -r ag
. 0 = I

The Cartan-Killing inner product is the trace of the square of this matrix:

(X, X) =tr R(X)? = 2(m11 — ma2)? + 8myama; + 2n?
The subspace g is spanned by aJ{al —}—a; as, ag, as, I, leaving the four operators aJ{al —agaz, aJ{ as, a;al, agag
to span g . A simple calculation shows that g, is spanned by a£a3. As a result

10



Subspace Spanned by

94 aIal - a;aQ, % (a{ag + agal)
g % (aj{ag - agal)

g  alas

do G/Ia]_ +a$a27a§7a371

The Lie algebra is the direct sum g = u(2) + hs = su(2) + u(1) + by.

9 Structure of Semisimple Lie Algebras

The Cartan-Killing metric g,z is nonsingular on a semisimple Lie algebra. It, and its inverse g%?, can
be used to raise and lower indices. In particular, the tensor whose components are cog, = ¢, é‘ Ju~y
is third order antisymmetric: cagy = Cgya = Cyag = —CBav ... - Classification of semisimple Lie
algebras is equivalent to classifying such tensors.

Another useful way to describe semisimple Lie algebras is to search for a canonical structure for
the commutation relations. A useful canonical form is an eigenvalue form

[X,Y] =AY

In a basis X;, with X = 2'X; and Y = ¢/ X ; this equation reduces to a standard eigenvalue equation
for the regular representation

>y (R X3),* = M%) Xi =0
j ok

Thus the search for a standard form for the commutation relations reduces to a study of the secular
equation

n

det (R(X) = AI) =) (~=X)"7¢;(X)=0 (1)

=0

The coefficients ¢,(X) are homogeneous polynomials of degree j in the coefficients z* of X = 2 X;.

In order to extract maximum information from this secular equation a generic vector X € g is
chosen. Such a choice minimizes all degeneracies. With a generic choice of X € g it is useful to
define the rank, [, of the Lie algebra g as:

1. The number of functionally independent coefficients ¢;(X) in the secular equation.

2. The number of independent roots, a1, as,...,q; of the secular equation.

w

. The dimension of the subspace H C g that commutes with X.

=~

. The number of independent (Casimir) operators that commute with all X;: C;(X) = ¢;(z* —
Xi): [C;(X), Xi] = 0.

11



For example, for s0(3) or su(2) the secular equation for X = z¢X; is

0 I3 —ZT2
det || —z3 0z | = Az| = (=A% + (=A)2(x) =0
X2 —T1 0

where ¢o(z) = 27 + 25 + 5. The rank is [ = 1. There is one independent coefficient ¢o(z) and
one independent root of this equation, a; = \/—0d;;z'z9 = iy/x - z. The only linear operators that
commute with X are scalar multiples of X. There is one independent homogeneous operator that
commutes with all generators X;, obtained by the substitutions z* — L; (for s0(3)) or z* — S; (for
s5u(2))

C*(L) = ¢o(m; — Li) = L + L5 + L3

The secular equation (1) is over the field of real numbers. This is not an algebraically closed
field. There is no guarantee that the number of independent functions ¢;(z) in the secular equation
is equal to the number of (real) roots of this equation until we extend the field from R to C, which
is algebraically closed. As a result, the classification of semisimple Lie algebras is done over complex
numbers. After the complex extensions of the simple Lie algebras have been classified, their different
inequivalent real forms can be determined.

10 Root Spaces

When the secular equation for the regular representation of a generic element in a Lie algebra
is solved, the commutation relations can be put into a simple and elegant canonical form. This
canonical form depends on the rank, I, of the Lie algebra, not the dimension, n, of the Lie algebra.
This provides a very useful simplification, as n ~ I2.

For this canonical form, the independent roots a;(x), as(x),...,q;(x) are gathered into a single
vector o with [ components. The vectors & = (aq,@s,...,q;) are called root vectors. The root
vectors exist in an /-dimensional space on which a positive-definite inner product can be defined.
The root vectors for a rank-I semisimple Lie algebra g span this Euclidean space. The basis vectors
of g can be identified with the roots in the root space.

The roots in a root space have the following properties:

1. A positive definite metric can be placed on the root space.

2. The vector 0 is a root.
3. The root 0 is I-fold degenerate.
4. If o is a root and ca is a root, ¢ = %1, 0.
5. If & and B3 are roots
g=p-22L,
a-a

is also a root and 2« « B/ - ¢ is an integer, ny. In fact, B8’ is the root obtained by reflecting
B in the hyperplane orthogonal to c.

6. The set of reflections generated by nonzero roots itself forms a group, the Weyl group of the
Lie algebra.
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7. The angle between roots a and 3 is determined by

2 _a-ﬂa-ﬂ_E@_
COS(a,ﬂ)—mm—22—0 7].

=] W

1 2
’ 17 Z:
The integers n1,ns for noncolinear roots are constrained by |nins| < 4.

8. The relative lengths of the roots are determined by the angles between them:

cos’(0(a, B)) O(a,B) a-a/B-B

3/4 30°,150° 3%t
2/4 45°,135° 2+l
1/4 60°,120° 1

9. When the roots are normalized so that

z aiajzéij or Z a-a=1

a#0 a#0

the commutation relations can be placed in the canonical form presented in the next section.

It is possible to build up all possible root space diagrams using an “Aufbau” construction. We
start with a rank-one root space. This consists of three roots in R!: a, 0, —a.

To construct rank two root spaces, a new noncolinear root 3 is adjoined to the two nonzero roots.
The new root and the old roots span R2. The new root can only have a limited set of angles with
the roots already present. The set of roots e, 3 is completed by reflection in hyperplanes orthogonal
to all roots present. If any pair of roots violates the angle conditions, the result is not a root space.
In this way the rank two root spaces G2 (30°), By = C> (45°), Az (60°), and Dy = A; + A; (90°)
are constructed from A;. Proceeding in this way it is possible to construct rank three root spaces
(B3, C3, A3 = D3) from the rank two root spaces, the rank four root spaces from the rank three root
spaces, and so forth. Ultimately, there are four unending chains A,,, B,,, C,, D, and five exceptional
root spaces Ga, Fy, Eg, E7, Eg. The rank-two root spaces are shown in Fig. 3 and the rank-three
root spaces are shown in Fig. 4. The normalization factors (cf., point 9 above) are shown for the
rank-two root spaces in Fig. 3.

11 Canonical Commutation Relations

The canonical commutation relations are expressed in terms of root vectors. The [ operators in g
with the [-fold degenerate root vector 0 are Hy, Ho, . .., H;. These [ operators mutually commute. In
a matrix Lie algebra they can be taken as simultaneously commuting diagonal matrices. Associated
with each nonzero root & # 0 there is exactly one basis vector, E¢, in g. The canonical commutation
relations are expressed in terms of the roots as follows

[H;, Hj] =0 1<4,5<1
[Hi, Ea) = o;Eq
[Ea,E_a] - aH
[Ea,Eﬂ] = NaﬂEa +8 @ + B aroot
0 a + B not a root

13
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Figure 3: Rank-two root spaces. G 30°, By = Cy 45°, A5 60°, Dy = A; + Ay 90°.

The structure constants N af are determined from a recursion relation derived from a chain of roots
B-ma, B—(m—-1)a,..., B+(n—1) a, B+n a, where 8—(m + 1) a and B+(n + 1) « are not
roots (cf. Fig. 5). The structure constants are

N2, 5= %n(l-ﬁ-m) (- a)

The operators H and E¢q are often called diagonal and shift operators, respectively. They are
generalizations of the shift operators J3 and Ji of angular momentum theory. The general idea is as
follows. Since the operators H; mutually commute, the matrices I'(H;) representing these operators
can be chosen as diagonal in any matrix representation. The action of any of these operators on a
basis vector in this representation is H;|m) = m;|m). The operator Eq shifts the eigenvalue of H
according to

H(Eq|m)) = ([H, Ea] + EqH) [m) = (o + m) (Eq|m))

In this sense the operators Eq act on basis vectors |m) in such a way that the eigenvalue m is
shifted by a to m + a.
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Figure 5: An a chain containing /3.

Table 1: Roots for the simple classical Lie groups and algebras.

Group Algebra Root Space Rank Roots Conditions
SU(Z) 5u(n) Ay -1 +e;— €; 1<1 7éj <l
80(2l+1) 50(2l+1) Bl l :I:ei:I:ej,:I:ek 1 S'l <],k§l
Sp(l) = USp(2l) Ep(l) = usp(QZ) C l +e; + €j, +2e¢, 1<i<j,k<lI

For the simple classical Lie algebras the roots can be expressed in terms of an orthogonal Eu-
clidean basis set as shown in Table 1 and Figs. 3 and 4 for the rank-two and rank-three root spaces.
The roots for the five remaining inequivalent simple Lie algebras (“exceptional” algebras) are shown
in Table 2.

The diagonal and shift operators for several of the classical Lie algebras can be related to bilinear
products of boson or fermion creation and annihilation operators. For u(n) the bilinear products
azaj are related to Eq with o = e; —e;, 1 < i # j <mn, and H; = azai. This holds for either
boson or fermion operators. For sp(2n; R) we have the identifications with bilinear products of
boson operators as follows: +e; +e; < b;-rb;r-, +e; —e; & b;rbj, —e; —e; < bb;, and H; = b;-rbi.
In particular, +2e; b;rQ and —2e; + b?. For s0(2n) we have the identifications with bilinear
products of fermion operators as follows: +e; + e; <> f}f}, +e; —ej & fz.Tfj, —e; —e; & fif;, and
H;, = f;r fi- In particular f;r f;r = f# = 0. These identifications make it a relatively simple matter to
construct unitary matrix representations of the compact Lie groups SU(n) that are symmetric or
antisymmetric, of USp(2n) that are symmetric, and of SO(2n) that are antisymmetric (bosons «
symmetric, fermions < antisymmetric).
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Table 2: Roots for the simple exceptional Lie algebras.

Root Space Rank Dimension Roots Conditions

Go 2 14 +e; —ej 1<i#j#k<3
+[(e; + Ej) — 2eg]

F4 4 52 :I:ei:l:ej,:I:Zei 1§1¢]§4
:I:e1 :|:e2:i:e3:|:e4

E(; 6 78 ﬂ:ei:l:ej 1Sl¢]§5
% (:i:el + €9 + €3 + €, + 65) + @ee (a)

E; 7 133 te; +e; 1<i#j<6
%(:I:el :i:ezj:e3j:e4:|:e5:l:e6)ﬂ:¥e7 (®)

Es 8 248 te; +e; 1<i#j<8

%(:i:el:l:eQ:}:egzi:e4:i:e5:l:e6:te7:i:eg) (a)

(a) Even number of + signs.
(®) Even number of + signs within bracket.

12 Dynkin Diagrams

Every root in a rank [ root space can be represented as a linear combination of [ “basis roots.” These
basis roots can be chosen in such a way that all coeflicients are integers. In fact, the basis roots can
be chosen so that all linear combinations that are roots involve only positive integers (and zero) or
only negative integers and zero. This comes about because every shift operator Eg5 can be written
as a multiple commutator

E5~[Ea,[Eﬂ,E—Y]] S=a+pB+n~

One simple way to construct such a basis set of fundamental roots is to construct an /—1 dimensional
plane through the origin of the root space that contains no nonzero roots, and choose as [ fundamental
roots the [ roots on one side of this hyperplane that are closest to it. For the classical simple Lie
algebras the fundamental roots are

Root Space o o o o
A e1—ey e —e3 e_1—¢
D, ej—ey ey—e3 e_1—€ e_j+e
By e —ey e —e3 € _1—¢ +1e
D, e —e ey —e3 €1 —¢ +2¢

All roots in the rank-two root spaces have been expressed in terms of both two orthogonal vectors
and two fundamental roots in Fig. 3.
If a; and «; are fundamental roots their inner product is zero or negative

1 2 3
CcoS (aiaaj) =0, _\/ga _\/ga _\/;

This information has been used to classify the root spaces of the inequivalent simple Lie algebras
(over C). The procedure is as follows. Each of the | fundamental roots in a rank [ root space is
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represented by a dot in a plane. Dots representing roots a; and «; are connected by n;; lines, where
cos(ay, aj) =—y/n;;/4. Orthogonal roots are not connected by any lines.

Such diagrams are called Dynkin diagrams. Disconnected Dynkin diagrams describe semisimple
Lie algebras. Connected Dynkin diagrams classify simple Lie algebras.

The properties of Dynkin diagrams arise from two simple observations.

O1: The root space is positive definite.

02: If u is a unit vector and v; are an orthonormal set of vectors,

Z(u vi)? <1

These two observations lead to three important properties of Dynkin diagrams.

D1: There are no loops. If a; (i =1,2,...k) are in a loop, then there are at least as many lines as
vertices. With u; = a;/ |o),

k k k
le,',lej :k+22u,~-uj>0
i=1 j=1

i<j
Since 2u;-u; < —1if u;-u; # 0, there cannot be as many lines as vertices.

D2: The number of lines connected to any node is less than four. If a; are connected to v, then
with u; = ai/|ai|,

Z(v-ui)2 = Zni/4< 1

since v is linearly independent of the ;.

D3: A simple chain connecting any two nodes can be shrunk. If the original diagram is allowed,
the shrunk diagram is also allowed, and conversely.

Figure 6: A chain with single links can be removed from a diagram. If the original is an allowed
Dynkin diagram, the shrunk diagram is also allowed, and conversely.

Since the shrunk diagram in Fig. 6 violates D2 the original is not an allowed Dynkin diagram.

According to these results, the maximum number of lines that can be attached to a vertex is
three. If a vertex is attached to three lines, it can be connected to three (one line each) other vertices,
two (two plus one) other vertices, or only one other vertex (all three lines). This last case describes
Dynkin diagram G5 (cf. Figs. 3, 5).

The only remaining possibilities are shown in Fig. 7.

For diagrams of type (B, C, F') we define vectors
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gy ———s  (B,GH)

it +——e——2 (D,E)
u; Up=1 x Yg=-1 ¥1

Figure 7: The only remaining candidate Dynkin diagrams have either two vertices (B, C, F') or one
vertex (D, E) connected to three lines.

P q
u= E tu; v = E Jv;
i=1 j=1

where as usual u;, v; are unit vectors oy /|og|. The Schwartz inequality applied to u and v leads

to the inequality
1 1
1+-)(1+-)>2
p q

The solutions with p > ¢ are

P q Root Space Constraint
arbitrary 1 B, G l=p+1
2 2 Fy

For diagrams of type (D, E) we define vectors

p—1 q—1 r—1
u:E 1, v:g AL w:E kwy,
i=1 j=1 k=1

where as usual u;, v;, Wi are unit vectors G /|0tm|. With similar arguments, we obtain the
inequality

1 1 1
St -+ = >2
p q T
The solutions with p > ¢ > r are
p g r Root Space Regular Euclidean Solid
arbitrary 2 2 Dpyo
3 3 2 FEg Tetrahedron
4 3 2 E; Cube — Octahedron
5 3 2 Eg Icosahedron — Duodecahedron
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All allowed Dynkin diagrams are shown in Fig. 8. In these diagrams roots making an angle of 120°
with each other (joined by single lines) have equal length. Roots joined by double lines or triple lines
have different lengths. The arrows on double lines indicated the shorter and longer roots. Arrows
point to longer roots. The root space G is self dual, so it doesn’t matter which way the arrow
points.

Coxeter-Dynkin diagrams also appear in classical geometry and catastrophe theory.

13 Real Forms

The metric tensor g,, for a simple Lie algebra (over C) in the canonical basis H, Eq is

[ 1 1 H
1 H,

Eya (2)
E—a

Erp
E_p

g —

== O
O =

= O
O =

In this basis the Lie algebra decomposes into positive- and negative-definite subspaces according to

g=9++0-

g+ spanned by H; (E-l-a + E—a) /2
g_ spanned by (E—l-a - E—a) /2

The choice of basis suggested above diagonalizes the Cartan-Killing form in Equ (2): g — I, 4, with
p =1+ %(n—1) positive values +1 on the diagonal and ¢ = %(n — ) values —1 on the diagonal. The
trace of this matrix is the trace of g: +1.

An arbitrary element in this (complex) Lie algebra is a linear superposition of the form

X =3 hHi+ ) €%Ea (3)
i a#0
where all n coefficients h?, e® are complex. If all these coefficients are taken real the resulting Lie
algebra closes under commutation and describes a noncompact Lie group. The subalgebra describing
the maximal compact subgroup is spanned by the linear combinations (E—i-a — E—a) /v/2. The
remaining operators exponentiate to a noncompact coset

EXP{hH;+¢$ (Bya+F_q)/V2)
which is topologically equivalent to R, K =1+ §(n —1) = §(n +1). Of all the real forms of

the complex Lie algebra described by this set of canonical commutation relations (or root space, or
Dynkin diagram), this is the least compact real form.
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Figure 8: Four infinite series (A4;, Dy, By, C;) of Dynkin diagrams exist and correspond to the classical
simple Lie groups (SU(l 4+ 1),S0(21),S0O(2l + 1),USp(2l)). The five exceptional Dynkin diagrams
include a short finite series (E;, | = 6,7,8), Fy and Gs.
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The compact real form is obtained from (3) by taking linear combinations

X=YihiHi+ Y i (Fpa+B_q)/V2+ S ¢ (Bpq-F_q)/V2
i a#0 a#0

where hi, e, e? are real. The compact real forms of the simple Lie algebras are

Root Space Group

A SU(l)

D, SO(21)

B SO(2l + 1)

G USp(2l) = Sp(l)

If the imaginary factor i is absorbed into the Cartan-Killing metric, this metric is diagonal, all
matrix elements are —1, the trace of this form is —n, and the linear combinations for X are real.

Every complex simple Lie algebra (i.e., simple Lie algebra over C) has a spectum of inequivalent
real forms. These can all be obtained from the compact real form by an analog of Minkowski’s “ro-
tation trick,” derived by Cartan. Cartan introduced a metric preserving linear mapping (“involutive
automorphism”) T : g — g with the property 72 = I and (TX,TY) = (X,Y), with X,Y € g.
The operator T has eigenvalues +1 and induces a decomposition (“Cartan decomposition”) in g as
follows

g=Ft+p ! 1

As a result, the subspaces € and p are orthogonal. The subspaces obey the following commutation
and inner product properties

[e,¢] C ¢ e < 0
[Ep] C p (&p) = 0
[p,p] C ¢ (psp) < O

Under the analytic continuation p — ip the compact Lie algebra g is rotated to a noncompact Lie
algebra g’ whose commutation relations and inner product properties are

g = t+p = g = t+yp
[£,€] C ¢ (6,8 < 0
Ep] C 9 &p) = 0

p,p'] C (®,p) > 0

The maximal compact subalgebra of g' is . The subspace p' exponentiates to a simply connected
submanifold on which the Cartan-Killing metric is positive definite. This manifold is topologically
equivalent to RX, K = dim p. It is not geometrically equivalent to RX once an invariant metric is
placed on it.

Three linear mappings that satisfy T2 = I suffice to generate all real forms of all the simple
classical Lie algebras.
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13.1 Block Matrix Decomposition

The compact Lie algebra u(n; F') has a block submatrix decomposition (n = p + q)

won-[4 2] % ]

q

where AL = —A,,,A]; = —A, and B is an arbitrary p x ¢ matrix over F. Under the map T'(g) =

[Ip 0

I, g0lp.q, Ipg = 0 I, ], the diagonal subspace [ Ap 0 ] has eigenvalue +1 and the off-

0 A4,

diagonal subspace [ _OBf +OB ] has eigenvalue —1. Under the Cartan rotation
) | A4 O 0 +B
u(naF)%u(p;%F)_[ 0 Aq:|+|:+Bf 0 ]
The real forms of the classical Lie groups obtained in this way are
Dn; Bn An—l Cn
50(2n) Sp(n) = Sp(p,q)
soen+1) — S0@9) SU(n) = SU(p, q) USp(2n) — USp(2p, 2q)

13.2 Subfield Restriction

The Lie algebra su(n) of complex traceless antihermitian matrices has a subalgebra so(n) of real
antisymmetric matrices. The algebra su(n) can be expressed in terms of real n X n antisymmetric
matrices A,, and traceless symmetric matrices S,

su(n) = so(n) + [su(n) —so(n)] = 4, +iS,
The Cartan rotation is
su(n) = sl(n; R) = so(n) +i[su(n) —so(n)] = A, + Sp

The classical Lie group generated by this transformation is SL(n; R).

A similar rotation can be carried out on unitary matrices over the quaternion field, u(n; Q) =
sp(n). This algebra contains the subalgebra u(n), in which quaternions q = qo + Zgq1 + J¢2 + Kqgs
are restricted to complex numbers q = ¢gg + iq;. There is a natural decomposition

sp(n) = u(n) + [sp(n) — u(n)]
It is useful at this point to replace each quaternion matrix element by a 2 x 2 complex matrix:
sp(n) — usp(2n). This is a unitary representation of the symplectic algebra. Replacing the complex
matrix elements in u(n) by 2x 2 real matrices simultaneously generates a real matrix representation of

u(n) named ou(2n). This is an orthogonal representation of the unitary algebra. The decomposition
above is

sp(n) = u(n) + [sp(n) —u(n)] = ou(2n) + [usp(2n) — ou(2n)] = Asy, + iSay,

where as before As, and Sy, are 2n x 2n antisymmetric and symmetric matrices. The Cartan
rotation maps this to sp(2n; R)

usp(2n) — sp(2n; R) = Az + Son

The classical Lie group generated in this way is Sp(2n;R). Matrices in this group satisfy the
quadratic constraint M!GM = G, G* = —G, det(G) # 0. The real symplectic groups leave invariant
Hamilton’s equations of motion: dp;/dt = —0H/0q;, dq;/dt = +0H [Op;.
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Table 3: Real forms of the simple classical Lie algebras.

Mapping Real Form Maximal Compact Root Space Condition
Subalgebra,

Block Submatrix s0(p, q) so0(p) + so(q) D, p+qg=2n
s0(p, q) s0(p) + s0(q) B, p+qg=2n+1
su(p, q) u(1) + su(p) + su(q) Ap1 p+g=n

sp(p,q) = usp(2p,2q)  usp(2p) + usp(2p) Cr p+qg=n

Subfield Restriction sl(n; R) so(n) Anq

sp(2n; R) u(n) Cn

Field Embedding 50*(2n) u(n) D,

su*(2n) sp(n) = usp(2n) Aspi

13.3 Field Embeddings

The image of u(n) — ou(2n) consists of a set of 2n x 2n antisymmetric matrices of dimension
n?. These matrices form a subset of s0(2n), which consists of 2n X 2n antisymmetric matrices of
dimension 2n(2n—1)/2. As a result ou(2n) is a subalgebra in so(2n). Thus ou(2n) ~ ¢ and so(2n) ~

g and we have a Cartan decomposition

so(2n) = ou(2n) + [so(2n) — ou(2n)]
1 \
ou(2n) + i[s0(2n) —ou(2n)] = s0*(2n)

In the same way the image of sp(2n) — usp(2n) consists of an n(2n + 1) dimensional set of 2n x 2n
antihermitian matrices. This is a subset of su(2n), which has dimension (2n)? — 1. It is also a
subalgebra of su(2n). Thus usp(2n) ~ ¢ and su(2n) ~ g, so we have a Cartan decomposition

su(2n) = usp(2n) + [su(2n) — usp(2n)]
1
usp(2n) + i[su(2n) —usp(2n)] = su*(2n)

These real forms are summarized in Table 3.

The root spaces 4; [SU(2)], By [SO(3)], and C; [U(1;Q) ~ USp(2;C)] are equivalent. As a
result, the different real forms of their complex extensions are related to each other. Similar remarks
hold for the real forms of By = Cy, Dy = Ay + Ay, and D3 = A3z. The relations among these real
forms are summarized in Table 4. This table is useful in inferring “spinor representations” among
classical groups. Thus, SO(3) has spinor representations based on SU(2) and Sp(1); SO(4) has
spinor representations based on SU(2) x SU(2); SO(5) has spinor representations based on USp(4);
and SO(6) has spinor representations based on SU(4).

For completeness, the real forms for the exceptional Lie algebras are collected in Table 5.

Real forms of the complex extension of a simple Lie algebra are almost uniquely distinguished
by an index. This is the trace of the Cartan-Killing form (2), once the appropriate factors of i
have been absorbed into it. If n. is the dimension of the maximal compact subgroup, x =tr (g) =
+1(n — n.) — 1(n.) = n — 2n,. The index ranges from —n for the compact real form (for which
ne =n) to +1 for the least compact real form.
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Table 4: Equivalence among real forms of the simple classical Lie algebras.

Ay = B = Ci X
su(2) = 50(3) = sp(1l) = usp(2) -3
su(l,1) =sl(2; R) = s0(2,1) = sp(2; R) +1
D2 = A1 + A1 X
s0(4) = 50(3) + s0(3) —6
50*(4) = 50(3) + s0(2,1) -2
s0(3,1) = s((2;C) 0
50(2,2) = s0(2,1) + 50(2,1) +2
B, = Cs X
s0(5) = sp(2) = usp(4) -10
s0(4,1) = sp(1,1) = usp(2,2) -2
50(3,2) = sp(4; R) +2
D3 = Az X
50(6) = su(4) —15
s0(5,1) = su*(4) -5
50*(6) = su(3,1) -3
s0(4,2) = su(2,2) +1
50(3,3) = sl(4; R) +3
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Table 5: Real forms of the exceptional Lie algebras.

Root Space Classgank(Charactery Maximal Compact Subgroup

Root Space Dimension
G Ga(-14) G 14
Ga(42) A+ Ay 6
F4 F4(_52) F4 52
F4(,20) B4 36
Fy(ya) Cs+ Ay 24
Eg Eg(—78) Eg 78
Eg(—26) Fy 52
E6(714) D5 + Dy 46
Eg(42) As + Ay 38
Eé(+6) Cy 36
Er Er(_133) Er 133
Eq(_25) E¢ + Dy 79
E7(,5) D¢ + A 69
Er4m Ay 63
Eg Es(—248) Eg 248
Eg(_24) E7 + A1 136
E8(+8) Dg 120
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14 Riemannian Symmetric Spaces

Exponentiation lifts Lie algebras to Lie groups and subspaces in Lie algebras into submanifolds in
Lie groups. In particular, exponentiation of a Cartan decomposition

g = ¢t + p
+ { 1
G = K x (P=G/K)

lifts the subspace p to the quotient (P = G/K).
A metric may be defined on the Lie group G as follows. Define the distance between the identity
and some nearby point g(e) = EX P(eX) = EXP(dz'X;) by

ds*(0) = Gps0z"dz°

Move I and g(e) to the neighborhood of any point g(x) € G by left multiplication: g(x)I — g(z),
9(z)g(02'X;) = g ((z + dz)'X;). The infinitesimals dz’(z) at z (defined by g(z)) and dz* = dz?(0)
at I are linearly related

Szt = Mi]- (z)dx? ()

By requiring that the distance ds between I and g(6wiXi) at the identity be the same as the distance
between g(z'X;)I and g(z'X;)g(62X;) = g ((z + dz)'X;) at g(z'X;) leads to the condition

ds® = Grs(0)62"62° = Grs(0)M"(z) M®j(z)dz’ (z)da’ (z) = Gij(z)dz’ (z)da’ (z)
An invariant metric G(z) over the Lie group G is defined by

Gij(z) = Grs(0)M7(x) M%)
Gz) = MHz)GO)M(z)

Tt is useful to identify G(0) with the Cartan-Killing inner product on g. Since M (z) is nonsingular,
the signature of G(z) is invariant over the group.

The invariant metric on G can be restricted to subspaces K C G and P = G/K C G. The
signature on these subspaces is the same as the signature on the subspaces ¢ and p in g. Thus, if G
is compact, the invariant metric is negative definite on K and on P = G/K and positive definite on
the analytically continued space P’ = G'/K. In short, it is definite (negative, positive) on P, P’.
These spaces are Riemannian spaces. They are globally symmetric. They have been investigated by
studying the properties of the secular equation of the Lie algebra g, restricted to the subspace p:

det [R(pP) ~M] = 3 (~N)" 7;(p) = 0 @

J
where the P; are basis vectors that span p. The coefficients é;j (p) in the secular equation (4) for
Riemannian symmetric spaces are related to the coefficients ¢;(x) in the secular equation (1) for
Lie algebras. A rank for the Riemannian symmetric space P = EXP(p) can be defined from the

secular equation following exactly the prescription followed for the Lie algebra g. The rank of the
Riemannian symmetric space P = EX P(p) is

1. The number of functionally independent coefficients (;ASj (p) in the secular equation.
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Table 6: All classical Riemannian symmetric spaces.

Root Quotient Dimension Rank X

Space

Apig-1 SUP,q)/S[U(p) ®U(q)] 2pq min(p,q) 1-(p—q)?

An1 SL(n; R)/SO(n) tn+2)(n-1) n-1 n—1

Asp—1 SU*(2n)/USp(2n) 2n+1)(n—-1) n-1 —2n—1

Bpiq  SO(p,q)/SO(p) ® SO(q) pq min(p,q) pg—zp(p—1) = 5ala—1)
Dpiq  SO(p,q)/SO(p) ® SO(q) pq min(p,q) pg—3p(p—1) —3q(g—1)
D, SO*(2n) /U (n) nin—1) n —n

Cprq  USp(2p,2q)/USp(2p) @ USp(2q) 4pq min(p,q) —2(p—¢)* - (p+q)

Chn Sp(2n; R) /U (n) n(n +1) n +n

2. The number of independent roots of the secular equation.
3. The dimension of the maximal Euclidean subspace in P.

4. The number of independent (Laplace-Beltrami) operators that commute with all displacement
operators P;: Aj(P) = ¢;(p" = P;).

Rank 1 Riemannian symmetric spaces are isotropic as well as homogeneous.

Tables 3 and 5 contain all the information required to enumerate all the classical and exceptional
Riemannian symmetric spaces. All the classical Riemannian symmetric spaces are tabulated in Table
6. The exceptional Riemannian symmetric spaces can be constructed from the information in Table
5 following the procedure used to construct Table 6 from Table 3.

As particular examples of Riemannian symmetric spaces we consider the compact spaces SO(p+
q)/ [SO(p) x SO(q)] and their noncompact counterparts SO(p,q)/[SO(p) x SO(q)]. These spaces
have rank min(p, ¢), dimension pq, and can be represented explicitly in matrix form as

0 |X 0 |X] [Dy|Y
e fo | 2 B arta ) = [t o

Here X is a px ¢ matrix and ¢ = +1 for the noncompact case and —1 for the compact case. The block
diagonal matrices D, and D, are defined from the metric-preserving conditions (M*I,,,M = I,,,,
ML, M = I,,4)

D) =1I,+0oYY" D =1I,+0oY'Y

The pq coordinates in the Riemannian symmetric spaces can be taken as the pg elements of the
submatrix Y.

These Riemannian symmetric spaces can be treated as algebraic submanifolds in RX, K =
pq + %q(q +1). The K coordinates on R¥ can be identified with the pg matrix elements of Y and
the 3g(g+1) matrix elements of the real symmetric matrix D,. These coordinates obey the £q(g+1)
algebraic constraints defined by

2
D2 - oYY =1,

For SO(3)/S0O(2) and SO(2,1)/S0O(2) this condition is determined from the matrix
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be(oe o] 7]]”

or oy |

T
y to be 2 —o@*+yH) =1
2

For 0 = —1 the space is the sphere S? defined by 22 + (22 + 32) = 1. For o = +1 the space is
the two-sheeted hyperboloid H2 defined by 2? — (22 + y?) = 1. More specifically it is the upper
sheet containing (0,0,1) of the two-sheeted hyperboloid. The second sheet occurs in the coset
0(2,1)/S0O(2). The symmetric spaces SO(n + 1)/SO(n) and SO(n,1)/SO(n) are the sphere S™
and the upper sheet of the two-sheeted hyperboloid H3,. Both have dimension n and rank 1. The
spaces are simply connected, homogeneous, and isotropic.

For SO(4,2)/S0(4) x SO(2) the eight dimensional algebraic manifold is defined by the three
constraints in R!

Yr Ys

2
Yoo Yo | _ | Y1 Y2 Y3 s yv2 y6 | _ |1 0
Y10 Y11 Ys Ys Y1 Ys ys Y7 01
Ys Ys

The compact analytically continued space SO(6)/S0O(4) x SO(2) is obtained by setting o = —1.
These spaces have dimension eight and rank two. They are homogeneous but not isotropic. For each,
there are “two inequivalent directions.” There are two independent Laplace-Beltrami operators on
these spaces, one quadratic and one quartic.

The complete list of globally symmetric pseudo Riemannian symmetric spaces can be constructed
almost as easily. Two linear operators, T} and T are introduced that obey T = I, T2 = I,TyT> =
T>Ty # I. The two are used to split g into subspaces

Tlga'r = 0807 TQQ(TT =T@or

where ¢ = £1, 7 = £1. The decomposition and double rotation

g = B+ t 8+ t+ g+ + 9
1T

g = g4+ + 94— + ile—4+ + g—-)
1T

g = gy t dgy— + e+ + ig—_)

generates a noncompact subgroup K’ as well as a pseudo-Riemannian symmetric space P"
K" = EXP(g4++ +ig+-) P"=EXP (ig-4 +9--)

These have also been classified.
The simplest example of a Riemannian pseudo symmetric space is SO(2,1)/SO(1,1):

0 656 0 010 0 636
50 (2, 1) — —6; 0|6 — 0 016 + —6; 0 0
0, 6.1 0 0 6,|0 6, 010
!
z x|y
M= —x x| =x
Y * %
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The metric-preserving condition M¢I,1 M = I, leads to the constraint equation 22 + z2 — y? = 1.
This space is the single-sheeted hyprboloid H?Z. It is two dimensional and has rank 1, but it is not
isotropic. Intersections with the plane z = 0 are hyperbolas and with the planes y = const. are
circles. This space is not simply connected.

15 Summary

Lie groups are among the most powerful mathematical tools available to Physicists. They play
a major role in Physics because they occur as transformation groups from coordinate system to
coordinate system in real space (rotation group SO(3), Lorentz group O(3, 1), Galilei group, Poincaré
group 150(3,1)) or in spaces describing internal degrees of freedom (SU (2) for spin or isospin, SU(3)
for quarks and color, SU(4) for spin-isospin, ...).

It is remarkable that a beautiful classification theory for simple (the building blocks) Lie groups
exists, because of the rather amorphous nature of the definitions of a Lie group. In a search for
structure, the first step in the analysis of Lie groups is linearization of the group multiplication law
in the neighborhood of the identity to a linear vector space on which there is a Lie algebra structure.
This in itself is sufficient to create a strong connection to Quantum Mechanics. Although there is not
a 1:1 correspondence between Lie groups and their Lie algebras, there is a very beautiful connection
between them. This relates algebra (discrete invariant subgroups) and topology (homotopy groups)
in an elegant way.

The structure of Lie algebras is described using tools from linear algebra: secular equations and
inner products. Together, these tools are used to reduce Lie algebras to their basic units: nilpotent
and solvable invariant subalgebras and semisimple and simple Lie algebras. The commutation rela-
tions for simple Lie algebras can be put into a canonical form using another miracle of this theory: a
positive definite root space that summarizes the properties of the secular equation and the Cartan-
Killing inner product. As the secular equation can only be solved exactly over an algebraically closed
field, the classification of simple Lie algebras covers complex Lie algebras. Each complex extension
has several real forms. These are easily classified.

Even more remarkable is the connection between simple Lie groups and Riemannian spaces that
“look the same everywhere.” All Riemannian symmetric spaces are quotients of a simple Lie group
by a subgroup that is maximal in some precise sense (Cartan decomposition sense). Cartan was
able to classify all Riemannian symmetric spaces as a consequence of his classification of all the
real forms of all the simple Lie groups. The algebraic tools used to classify Lie algebras (secular
equations, Dynkin diagrams) were used again to classify these spaces (Dynkin diagrams — Araki-
Satake diagrams). These spaces are classified by a root space, group-subgroup pair, dimension, rank,
and character. Construction of invariant operators (Casimir invariants, Laplace-Beltrami operators)
is algorithmic.

Nonsemisimple Lie groups/algebras can be constructed from simple Lie algebras by carefully in-
troducing singular change of basis transformations. This leads to “group contraction,” not discussed
above. In this way the Poincaré group can be constructed systematically from the groups SO(3,2)
or SO(4,1): SO(3,2) —» IS0O(3,1), SO(4,1) — ISO(3,1) in the limit of “large R.” Here R is the
“radius” of some universe of hyperbolic nature, with signature (3,2) or (4, 1). The Galilei group can
be constructed by contraction from the Poincaré group in the limit ¢ = 3 x 10'° cm/sec — oc.

We have not discussed here the theory of the representations of Lie groups. A beautiful theorem
by Wigner and Stone guarantees that the tensor representations of a compact group are complete.
Gel’fand has given expressions for the complete set of tensor representations of the classical com-
pact Lie groups. They are expressed by “dressing” the appropriate Dynkin diagrams or else in
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terms of irreducible representations of the symmetric group S,. Gel’fand has also given explicit,
analytic, closed form expressions for the matrix elements of any of the shift operators in any of
these representations. For the noncompact real forms most of the unitary irreducible representa-
tions can be obtained from these expressions for matrix elements (“master analytic representation”)
by appropriate analytic continuation.

Since Lie groups exist at the interface of algebra and topology, it is to be expected that there is a
very close relation with the theory of special functions. In fact, the theory of special functions forms
an important chapter in the theory of Lie groups. On the topological side, the shift operators Eq
(think J1) have coordinate representations (z'| Eq|z) involving first order differential operators. On
the algebraic side the matrix elements (n'|Eq/|n) are square roots of products of integers (divided
by products of integers). These topological and algebraic expressions are related to each other in a
myriad of ways. All of the standard properties of special functions (Rodriguez formulas, recursion
relations in coordinates and indices, differential equations, generating functions, ...) occur in a
systematic way in a Lie theoretic formulation of this subject.

Finally, no review or even book could do justice to the applications that Lie group theory finds
in Physics.

The rich interplay that exists between freedom and rigidity of structure found in Lie group theory
can be found in only the purest works of art — for example, the fugues of Bach.
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