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Abstract

The problem of determining the maximum value, minimum value, or the stationary values
of a function of several variables when these variables are subject to one or more constraints
occurs sufficiently often that special methods have been devised to address this problem. One
special method involves the use of Lagrange multipliers. We address this problem from three
points of view, two of them exploiting Lagrange multipliers.
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1 Introduction

1.1 Statement of the Problem

It frequently happens that some function (“objective function”) must be maximized (or minimized,
or made stationary) subject to conditions. To be specific, a function of n variables must be optimized
subject to k constraints. The function is expressed as a function

1,2
f(a:,.z‘,---,:c”) (1)
of n variables z',z2,---,z™. The constraints are expressed in terms of k constraint equations
¢1($17$27'”7mn) = a
¢2($1,$2,"',$n) = C2
d)k(mlaa"z: '7'7:”) = Cg (2)



1.2 Approaches to the Problem

There are three general approaches to treating this problem.

The first approach (Sec. 2) involves reducing the number of independent variables to n — k
and then solving the unconstrained equations by standard methods. The second approach (Sec. 3)
involves retaining n independent variables and solving for them as functions of k auxiliary variables
A (1 < a < k), the Lagrange multipliers. The third approach (Sec. 4) involves augmenting the set
of independent variables to n + k and optimizing an unconstrained function of n + k variables by
the usual methods.

In order to illustrate each method we carry along a specific example. It is treated by each of
these methods in turn. The common example is this: Optimize the nonsingular quadratic form

Az? 4+ By? (3)

subject to the condition
ax +by=c (4)

For this example n = 2 and k = 1.
For each of the three methods a flow diagram outlining the logic is presented and a Maple
worksheet describing how this logic applies to the standard example is also provided.

Section # Independent Variables

2 n—=k
3 n
4 n+k

In Section 5 we provide a very useful result relating the rate of change of the value of the objective
function at its critical point with the Lagrange multipliers and the differentials of the constraint
values dc;. There is a kind of duality between the two.

1.3 Applications

Applications of “Lagrange multiplier technology” given here fall into three groups. Two applications
are given in the first group. One is drawn from classical physics. It involves computing the classical
trajectory of a light ray under reflection and refraction conditions. This involves objective functions
with square roots. These calculations are carried out in Section 6. The second example, presented
in Section 7, is purely mathematical. It demonstrates how sophisticated methods (of algebraic
topology) are used to compute the stationary functions of a polynomial objective function when the
constraint is also polynomial. This example shows that there can be many critical values. It also
describes how the number of critical values can change (“bifurcate”) as the value of the constraint
changes.

The second group of examples contains three classes of applications where the methods of linear
algebra are used to give explicit closed forms for the solutions. These involve:

Section Objective Function Constraint(s)

8 Quadratic Linear
9 Linear Quadratic
10 Quadratic Quadratic

Section 11 provides a nice application of these results to the problem of fitting a straight line to data
when there are errors in the measurements of both the dependent (y) and independent (z) variables.



The final two sections deal with applications to Classical Thermodynamics (Section 12) and
Statistical Mechanics (Section 13). In both cases the Lagrange multipliers have a natural interpre-
tation as intensive thermodynamic variables that are conjugate to specific extensive thermodynamic
variables.

2 Reducing The Number of Variables
2.1 The Procedure

In the first approach the k constraint equations are used to solve for k of the variables z! in terms
of the remaining n — k, which are then treated as independent unconstrained variables. These k
expressions in n — k independent variables are then plugged into the function to be optimized, which
becomes a function of n — k independent variables. This function of n — k variables is optimized in
the usual way: by taking partial derivatives, setting them equal to zero, and solving for the values
of the n — k independent variables that cause the function to be stationary. These values are used
to determine the value of the k¥ dependent variables at the critical point. The values of the n — k
independent variables and the k dependent variables are plugged back into the function to find its
stationary values.
The logic of this procedure is summarized in the flow chart shown in Fig. 1.

2.2 Example

Application of this method of solution to the common example is summarized in the Maple worksheet
shown in Fig. 2. We first solve the constraint equation for one of the variables in terms of the other:
y = (¢ —az)/b. This expression for y in terms of z is substituted into the quadratic form to provide
an objective function of a single (n = 2,k = 1,n — k = 1) variable z:

f(z) = Az® + B[(c — az)/b]?

The critical point of this function of a single variable is determined by differentiating and setting

the derivative equal to zero
2Az 4 2B[(c — az)/b](—a/b) =0

The value of z that solves this equation is determined: z. = acB/(a?B + b*A). The subscript .
identifies this value of x as the x coordinate of the critical point. This value of z is used to determine
the value of the dependent variable y at the critical point: y. = bcA/(a*B + b>A) (by symmetry!).
The values of the independent variable z. and the dependent variable y. are next substituted into
the function f to determine its value at the stationary point (“critical value”):

ABé

fstat (l’c, yc) = m



Solve k constraint equations for k
dependent variables z in terms of
n — k independent variables x.

Substitute k& dependent variables
into objective function, now a function
of n — k independent variables.

Differentiate with respect to the
n — k independent variables.
Set the n — k derivatives equal to zero.

4
Solve for Solve for
n — k independent — k dependent
variables. variables.
{ 4

Evaluate objective function.

Figure 1: Flow diagram describing the logic of the method depending on n —k independent variables.



[ > f:=A*x"2+B*y"2; ## Expression to be made stationary
L f=Ax*+B)*
{:. g:=a*x+b*y-c=0; ## Constraint
g=ax+by-c=0
> yl:=solvelqg,y); ## Solve constraint for vy
ax—c
vl :=—T
[ > f2:=subs(y=yl, £f); ## Substitute into f to get function of one
variable
B(aJn:-—c)2
g s ek
2=Ax"+ 48
"> h:=diff (£2,x); ## Differentiate this function of x
>
2B(ax—c)a
h=24x+— o
L b
"> xl:=s0lve(h=0,x); ## Solve for x
Beca
| ZEalparary
L Ab°+Ba
[ > y2:=subs (x=x1,vyl); ## Substitute value of x to dertermine wvalue
of vy
a’Be
2 2 &
a Ab°+Ba
Yi == b
> zl:=subs(x=x1,y=y2,f);## plug values of x and y into £
2
¥ a‘Bc
AB P d’ Ab*+Bad’
zl = 7+ >
] (b +Ba?) b
> answer:=simplify(zl); ## Incredible! What a mess!! Simplify.
ABC®
answer =", 5
Ab"+Ba

Figure 2: Maple worksheet describing solution of constrained maximization using n — k independent
variables. The constraint equation is used to express a dependent variable y in terms of an indepen-
dent variable . The function to be optomized is a function of the single dependent variable . The
derivative is set equal to zero, and the value of x at the critical point is determined. This is used
to determine y.. The independent variable z. and dependent variable y. are used to determine the
value of f at the critical point (critical value).



3 Lagrange Multipliers 1. As Basic Variables

3.1 Procedure

The second approach involves the introduction of a set of Lagrange multipliers, A}, A2, -- -, \¥. There
is one for each constraint equation. A new objective function is created:

k
F($17w27"'7mn) = f(xlamza"'axn) + Z)\a(qsa(xl’mj,”"mn) —Ca) (5)
a=1

The Lagrange multipliers “lift” the constraints. This new function (“modified objective function”)
is treated as an unconstrained function of the n independent variables z?. It is treated in the
usual way. The n partial derivatives OF/0z! are taken and set to zero, giving a set of n equations
involving n variables ! and k Lagrange multipliers A*>. The n equations are used to solve for the
n variables z! in terms of the k Lagrange multipliers. These n expressions for the z? are plugged
back into the k constraint equations, and the values of the k£ Lagrange multipliers are determined
from these k equations. These k values of the Lagrange multipliers at the critical point are plugged
back into the expressions for the z?. Finally, these critical values of the ¢ are plugged back into the
original function f(z',z?%,---,z") [or the modified objective function F(z',z?%,---,z")] to determine
its stationary value.
The logic of this procedure is summarized in the flow chart shown in Fig. 3.

3.2 Example

Application of this method of solution to the common example is summarized in the Maple worksheet
shown in Fig. 4. A multiple of the constraint equation is added to the objective function to create
a new objective function depending on the two variables (x,y) and the Lagrange multiplier A

F(z,y) = Az? + By? + M azx + by — ¢)

This is treated as an unconstrained maximization problem. The partial derivatives with respect
to the two variables (z,y) are taken and set equal to zero. This gives two equations in the two
unknowns. These equations are solved for z and y as a function of the Lagrange multiplier A:
x = —Xaf2A, y = —\b/2B. These values of z and y are then substituted into the constraint
equation to construct a single equation in the single parameter A:

a® b
<ﬂ+ﬁ>)\+6_0

This equation is solved for \: A = —2ABc/(a®?B + b?A). This value of ) is substituted back into the
expressions for z and y to give their critical values z. and y.. As a final step, these critical values
are substituted back into f(z,y) or F(z,y) to obtain the value of f at the critical point.



Add constraints to objective function
using Lagrange multipliers:

F(z) = f(z) + Ao(z) — o)

Differentiate with respect to the
n independent variables x.
Set the n derivatives equal to zero.

Solve n equations for n variables x
in terms of k£ Lagrange multipliers:
x =z(N\)

Substitute () into k& constraint
equations, solve for k values of
Lagrange multipliers.

Find values of the n independent variables x
from the k& known values of the
Lagrange multipliers.

Evaluate objective function.

Figure 3: Flow diagram describing the logic of the method depending on n independent variables.



## Use Lagrange Multipliers to maximize a function.

£(x,y) :=A*x"2+B*y"2; ## Expression to be ‘stationarized’
1L\r,_y):=.4!x2+3y2

g(x,y) :=a*x+b*y-c; ## Constraint

gxy)=ax+by—c
F(x,y) :=f(x,y)-lambda*g(x,y); ## Unconstrained function

Fx, ) =Ax*+By -A(ax+by—c)

v v v

1 T T
\'4

> F_x:=diff (F(x,y),x); ## Partial derivative wrt x
Fx=24x-\a
> F_y:=diff(F(x,y),y); ## Partial derivative wrt vy
F y=2By-\Ab
> solve ({F_x=0,F_y=0}, {x,y}); ## Solve for x,y in terms of lambda
et L
I “28°%2 4
[ > x1:=1/2/A*lambda*a;yl:=1/2/B*lambda*b;
>
D
X =3
L Lab
Y28
[ > answerl:=subs (y=yl,x=x1,g(x,y)); ## Evaluate constrraint in terms
of lambda
1 2
Jodatx 271
: answerl =7~ 3 ¢
> lambdal:=solve{answerl=0,lambda); ## Solve constraint for lambda
cAB
ApEdr e
a B+b" A
[ > x2:=subs (lambda=lambdal,xl) ; ## Evaluaate x
5 cBa
gD ipmrea———
L a’B+b*A
[ > y2:=subs (lambda=lambdal,yl); ## Evaluate y
e cdb
L T 2 Bebta
[ > answer2:=subs (x=x2,y=y2,f(x,y)); ## Evaluate f(x,y) at stationary
pt.
Al B Bl A B
answer2 .= o 3
L (@ B+b%4) (a*B+b*A)
{:v answer3:=simplify(answer2); ## Simplify this mess
4 Ac'B
answerd =", o
L a’B+b 4

Figure 4: Maple worksheet describing solution of constrained maximization using n independent
variables. The partial derivatives of F'(z,y) are set equal to zero and the values of the variables
(z,y) are determined as a function of the Lagrange multiplier A. These expressions for (z,y) are
substituted into the constraint equations to determine the critical value of A, A.. This value is used
to determine critical values for z and y: (z.,y.). The critical values are plugged back into f(z,y)
to provide its value at the critical point.



4 Lagrange Multipliers 2. As Additional Variables

4.1 Procedure

In the third approach the Lagrange multipliers are adjoined to the initial set of n variables to

construct a set of n + k variables, where "1 = X!, ... g™tk = \*¥_ The objective function is
k
F(‘rla o '7$n;$n+17 e 7‘rn+k) = f(xla e 7'7:") + Z $n+a(¢a($17 e 73;”) - ca) (6)
a=1

This function F' of n + k variables is treated as an unconstrained function of all its arguments. The
first n partial derivatives OF/0x7 = 0 provide exactly the information presented by differentiating
Eq(5) above. The remaining k partial derivatives are exactly the constraint equations: 0F/dz™te =
(pa(xt,---,2™) — co) = 0. The resulting set of n + k simultaneous equations in n + k variables has
only isolated solutions in general. The n+ k& equations are solved for the set of isolated critical points,
and these values are plugged back into the function F(z!,- .-, z";z"*! ... z"t*). Equivalently, and
more simply, the first n components of the n + k vector of solutions is plugged back into the starting
function f(z!,---,z").
The logic of this procedure is summarized in the flow chart shown in Fig. 5

4.2 Example

Application of this method of solution to the common example is summarized in the Maple worksheet
shown in Fig. 6. From the function f(z,y) to be optimized and the constraint equation we construct
an objective function of three independent real variables according to

F(z,y,2) = A2® + By* + 2(az + by — ¢)

We search for an extremum by computing the three partial derivatives and searching for solutions
in the usual way:

2Ax + az =0
2By + bz =0
ax+by—c = 0

These three equations are simultaneously solved for the three independent variables (z,y, z) to find
(¢, Ye, 2¢). The first two coordinates are plugged back into the initial function f(z,y) to obtain its
value at the stationary point. Equivalently, the three coordinates (x.,y., 2.) of the critical point are
substituted back into the modified objective function F(z,y,2) to obtain the same critical value.

4.3 Solutions Using Algebraic Geometry

Powerful tools exists for solving the n + k equations resulting from this procedure when both the
objective function and the constraints are polynomial functions. This method uses tools developed
for the study of Algebraic Geometry.

Each equation defines a “codimension-1” surface in a space of dimension n. This jargon just
means that the surface has one lower dimension (codimension one) than the n + k dimensional space
in which the surface is embedded (e.g., the two-sphere S defined by z% + y? + 22 = 1 has one
lower dimension than the 3-space R® in which it is embedded). Intersection of two such surfaces
is a surface of codimension-2. Continuing, n + k such surfaces intersect (if they intersect at all) at
isolated points in R™t*. Special powerful algorithms from algebraic geometry have been developed



Add constraints to objective function
using Lagrange multipliers:

F(z;A) = f(2) + Mo(z) — o)

Differentiate with respect to the
n independent variables z,
and the k Lagrange multipliers.
Set the n + k derivatives equal to zero.

Solve n + k equations for n variables x
and k variables .

Evaluate objective function.

Figure 5: Flow diagram describing the logic of the method depending on n+ k& independent variables.
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[ > ## Use Lagrange multipliers to maximize a function.
[> ## Exploit the maximum symmetry.
[ >
[> £(x,y) :=A*xX"2+B*y"2;
L ﬂgyﬁ=Ax2+By2
[ > g(x,y) :=a*x+b*y-c;
gxy)=ax+by-c
[ > F(x,y,lambda) :=f (x,y) -lambda*g(x,vy) ;
F(x,y,\)=Ax*+By* —A(ax+by—c)
[> F_x:=diff (F(x,y,lambda),x);
Fx=2Ax-\a
> F_y:=diff (F(x,y,lambda),y);
F y=2By-Ab
[> F_l:=diff(F(x,y,lambda), lambda) ;
i Fl=—ax-by+c
> solve({F_x=0,F_y=0,F_1=0}, {x,y,lambda}) ;
cAb cBa BcA

= - X L A=2
Ba®+4bY" Ba’+A4b* Ba2+Ab2}

[ > x1:=c*B*a/(B*a"2+A*b"2);
| _ cBa
| e i ar
[ > yl:=1/(B*a*2+A*b"2) *c*A*Db;
_ cAb
N A b

> answer:=subs (x=x1,y=y1l,f(x,y));
At B4’ BcrA%D
+

answer =

2 2,2 2 3
(Ba"+4b") (Ba " +A4b")
> simplify (answer) ;

A B
Ba*+Ab*

e D e /T

Figure 6: Maple worksheet describing solution of constrained maximization using n + k independent
variables. A new function with three independent variables, (x,y, z), is created from the original
function to be optimized and the constraint equation. The critical values (z.,y., 2.) are determined
by setting the three partial derivatives OF'/0x,0F /0y, 0F /0x equal to zero. The first two coordinates
(z¢,y.) are substituted back into the original function to obtain its value at the critical point. The
third critical coordinate, z., is the value of the Lagrange multiplier at the critical point.
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to determine the locations of these intersections. They are embedded in many symbol manipulation
codes: the grobner package in Maple, for example.

Application of this method of solution to the common example is summarized in the Maple
worksheet shown in Fig. 7. First, the grobner package is loaded. The function to be optimized
and the constraint equation are introduced, and the modified objective function F(z,y, 2) of three
variables is defined, as before. Partial derivatives with respect to the three independent variables
(z,y, z) are computed, also as before. It is the solution method for this set of equations that differs.
An algorithm is summoned (gbasis). Two arguments are sent into this algorithm. The first consists
of the three simultaneous equations whose solutions are sought. This argument is sent in as an
array. The second argument consists of the three variables whose values are sought. This argument
is also sent in as an array: [z,y,2]. The output of the algorithm depends on the order in which
this last array is introduced ([z,y,z] results in an output that looks lots different). The output
generated by this algorithm consists of one or more arrays. Each array represents a solution of the
simultaneous equations. Each array (in Maple’s implementation) should be read left to right. The
leftmost entry is a function of the single variable = (because of ordering: z is the first argument in
the array [z,y, z]). This expression is set to zero and solved for z: z. = acB/(a?B+b?A). The next
argument in the output array involves both z and y. The value z. is introduced, the expression is
set equal to zero, and the result is solved for y.: y. = bcA/(a? B + b*>A). Things continue on along
this line until all components of the input vector (x,y,z) are determined. If there is no interest
in the value of the Lagrange multiplier A\ = z., one can stop after the value of y. is determined.
The set (z.,y.) is backsubstituted into f(z,y) to determine the value of this function at a critical
point. If gbasis outputs another array, as it may if the input equations are nonlinear, this procedure
is repeated. This continues until all output arrays have been solved. Since the input equations are
linear, gbasis outputs a single array.

A nonsingular quadratic function under linear constraints will have a single critical point. It is
for this reason that gbasis will output a single array for such problems.

5 A Differential Result

The value of the function (5) depends on the critical points (z!,z2,---,2m), the values of the La-
grange multipliers A%, and the values of the constraining parameters c,. The critical points (z)
depend on the Lagrange multipliers A, which in turn depend on the values of the constraints (c), so
that in fact the stationary (or critical) values of the modified function F' depend only on the values
of the constraints. We show this now by computing the differential of F":

F(a,),6) = f(@) + A ($al2) = ca) (7)
dF (2, ¢) = (5535"’5) + e a‘@‘;&”’)) A’ + (a(2) = ca) AN — Ndeo = —Ndeo  (8)
~ ~- 4 =0
=0

The underlined terms vanish, leaving only the dependence on the values of the constraints. In
particular, the value of the function increases in the direction of the constraint ¢, by an amount
equal the the conjugate Lagrange multiplier (F)A%, depending on the sign (£) with which the
constraints are added to the original objective function.

Applications

12



{> with (grobner) ;
[finduni, finite, gbasis, gsolve, leadmon, normalf, solvable, spoly]
{> £(x,y) :=A*X"2+B*y"2;
&nyy=Ax2+By2
{> g(x,y) :=a*x+b*y-c;
gxy)=ax+by—c
[ > F(x,y,lam) :=f (x,y) -lam*g (x,¥Y) ;
L F(x, y, lam):=Ax2+By2—lam (ax+by-c)
[> F_x:=diff(F(x,vy,lam),x);
L Fx=2Ax-lama
{> F_y:=diff (F(x,y,lam),y);
F y=2By-lamb
r F_l:=diff (F(%,y,lam),lam);
Fl=—ax-by+c
{ > gbasis([F_x,F_y,F_1], [x,y,lam]);
[Ba’x+xA4b*-Bac,Bya*+yAb’—bAdc,Blama’-2BAc+Ab” lam)
> xl:=solve(B*a"2*x+x*A*b"2-B*a*c=0,x) ;
. Bac
| xl=— - .
L Ba*+4b’
[> yl:=subs (x=x1,B*y*a”2+y*A*b"2-b*A*C) ;
yk=Bya2+yAb2—bAc
[ > y2:=s0lve(B*y*a"2+y*A*b"2-b*A*c=0,vy);
P bAc
7T Bat+4b?
> answer:=subs (x=x1,y=y2, f(x,y));

AB*a®c* Bb2 A2
+

answer := 2 2
! Ba*+4bY) (Bal+4bYH
[ > simplify(answer) ;

ABC
[ Ba*+4b*

Figure 7: Maple worksheet describing solution of constrained maximization using n + k independent
variables. The grobner package is first loaded. The algorithm proceeds as before to construct a set
of n + k simultaneous equations in n + k& unknowns. The equations are loaded into the gbasis callup
in one array. The second argument in the gbasis routine is an array containing the independent
variables. There is one output array for each solution set. The solutions of each output array are
obtained explicitly by setting each component of the array equal to zero and working from left to
right.

13



Figure 8: Reflection and refraction. (a) A light ray from S; to S» is reflected at P from a horizontal
surface. The total distance traveled is minimum. (b) A light ray from S; in medium 1 with index
of reflection nq travels to S» in a medium with index ny. The total time traveled is minimum.

6 Reflection and Refraction

The classical problems of reflection and refraction of light rays can be treated simply using the
technology of Lagrange multipliers.

6.1 Reflection

A light ray originates at the source Si, is reflected by a surface, and observed at the sink Sa (or vice
versa). What path is followed?

The geometry is shown in Fig. 8(a). We assume that the ray hits the reflecting surface at the
point P. This divides the interval between the perpendicular projections of S; and Sy onto the
reflecting plane (of length d) into two subintervals of lengths z; and x2. The values of 21 and z, are
not known, but the constraint is x; + 2 = d. It is assumed that the shortest path is determined by
the following principle:

Principle of Least Distance: The shortest path covers the least distance.

If this principle is correct, the shortest path is determined by computing the shortest total
distance subject to the constraint x; + 2 — d = 0. Pythagoras tells us that the distance traveled
during the first leg (1) of the trip is determined by d? = h? + z?. A similar result holds for the
second leg of the trip. The objective function to be optimized is

F(ay, o)) = /W + 23 + (/13 + 23 = A1 + 22— d) )

14



From this we find
6F I

o _ m =g
Oz Vh3+

(10)
OF _ \ = o0

0z Vh2+ z2
In this computation there is no need to evaluate the Lagrange multiplier, since the two ratios
z;/\/h? + z? are equal. From the figure, these ratios are the sines of the enclosed angles: z;/\/h? + 2% =
sin(a;). However, Euclid tells us that «; = 6;, so that the condition for reflection is

sinf; =sinfy (= \) (11)

In short, the angle of incidence is equal to the angle of reflection.
Remark: Euclid tells us how to solve this problem without resorting to Calculus at all.

6.2 Refraction

The problem of refraction can be treated similarly. However, there is a slight problem. When we
place a stick in water, it appears bent. Two interpretations are possible. One is that the stick bends
but light travels in a straight line. Such a possibility is consistent with the Principle of Minimal
Length. However, most people don’t believe this explanation: We believe the stick remains straight
and light bends as it passes from one medium to another. The geometry and the light ray trajectory
are shown in Fig. 8(b).

In this case the Principle of Least Distance won’t do: something else must be minimized. One
reasonable guess is that the time it takes to go from the source S; to the sink S is minimum.

Principle of Least Time: The shortest path takes the least time.

The speed of light in a medium with index of refraction n is ¢/n, where c is the speed of light in
vacuum. The optimization problem then becomes

dq dy

= c/—nl C/—n2 — /\(azl + 29 — d) (12)

Proceeding as above, we find
ni sin 01 = N9 sin 02 (: /\) (13)

Euclid would have a little more trouble deriving this result.

Remark: Although the Principle of Least Distance cannot be used to derive the refraction
result, the Principle of Least Time can be used to derive the reflection result. We conclude that the
latter is the more fundamental of the two Principles.

7 Polynomial Objective Function - Polynomial Constraint

When both the objective function and the constraints are polynomial functions the methods of
algebraic topology can be used to find the stationary values. We illustrate with an example from
Cox, Little, and O’Shea.

The objective function is the nonhomogeneous polynomial f(z,y,2) = x> + 2zyz — 22. The
stationary values of this function on the unit sphere ¢(x,y,2) = 22 + y2 + 22 = 72 = 1 are to be

15



determined. Setting up the problem in the usual way, F(z,y,2; ) = f(z,y,2) — A(¢(z,y,2) — 1),
leads to the four equations

OF/ox = 3z + 29z — 2z = 0
OF/0y = + 22z — 22y = 0 (14)
OF/0z = 2xy — 2z — 2\xz = 0
OF/ON = 2 + y* + 22 =1

The call to gbasis reveals the structure of the solution:

gbasis([Fm,Fy,Fz,FA]; [:c,y,z, )‘])7

V8.8 167616 , 36717 , 134419 ,
, 2. 207 T35 590 7670
x +y +2z2°-1

19584 ; , 1999 ; 6403

z
- ;833 11522295 108 ; 83‘3556
383@216 295906 33833562
v +ya’ =y — ooar

), 6912 3§§? T

Y’z — oo
+ 205
3835 576 o % 1605 3535 453

yz2® —yz— —2+ —z
;1763 59 655 ?8 11 18
—_—=Z —_—= —Z
11527 " 1152° 288

The last factor is set equal to zero and the seven roots of z are determined. The roots are
O,il,ig,i\/ﬁ/ 16. These values are substituted into the previous equations to determine the
values of x and y allowed for each of the seven possible values of z. Each solution set is inserted into
the objective function to produce a critical value. The results follow:

Ty —

z Y T fcr
0 0 +1 +1
0 +1 0 0
+1 0 0 -1
42 +1 2 _28
3 3 a7

V23 333 3 T
9% T 5 8

The maximum value of this function on the sphere is +1 at (;t: y,z) = (+1,0,0), while the minimum
is “doubly degenerate” in the sense that the minimum at — 27 occurs at the symmetry-related points
(_ %7 + %7 i%)

Remark: The solution set above has been determined for the unit sphere, » = 1. Solution
sets also exist for other values of the sphere radius, r, so that solution sets are functions of . The
solution sets can be written as (z(r),y(r), 2(r))a, where a indexes the different solutions. In the
case above, 1 < a < 10. It is possible that as r ranges from 07 to “00”, two or more solution sets
disappear in bifurcations, or additional solution sets appear. Since only one parameter r appears in
this optimization problem, fold bifurcations (A2) are possible. Since there is a symmetry ((z,y,2) =
(z, —y,—2)), cusp bifurcations (A3) may also occur. No other bifurcations are generically possible.

Three Important Classes of Problems
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Certain classes of problems involving Lagrange multipliers can be solved systematically and in
closed form. These involve cases where the objective function is either linear or quadratic, and the
constraints are linear or quadratic. In the following three sections we systematically treat the three
cases of interest. These are as shown.

Objective Constraint(s)
Function | Linear Quadratic
Linear Sec.9

Quadratic | Sec.8 Sec.10

8 Quadratic Form — Linear Constraints

An entire class of optimization problems can be treated by the methods of linear algebra. These
problems involve finding the critical point and value of a quadratic form subject to linear constraints.

8.1 Result
We begin with a quadratic form in n variables
1 n 1 i,
The matrix @);; is assumed to be nonsingular but not necessarily positive definite. This allows the
possibility of finding maxima (if @ is negative definite) or saddles (if @ is indefinite).
Next we introduce k linear constraint equations
Agjz? —ca =0 (16)

The quadratic form and constraint equations are combined to form a functon of n + k variables
x € R" and z € R* following the procedure introduced in Section 4:

F(IL', Z) = EQUZ'ISL'] + Za(Aaj:U] - ca) (17)

The n partial derivatives with respect to the ¢ and the k partial derivatives with respect to the z,
can be written in the forms

0; : Qijx? + Agz* = 0 [Q At][m]z{o] (18)

Oy : Agjzd = cq or A 0 z c
In the matrix expression on the right, A is the k x n matrix of coefficients A,; and A? is its transpose.

The column vectors [z], [2],[0], and [¢] are of length n, k, n, and k. From these expressions we find
simple relations for the Lagrange multipliers z and the original variables z at the critical point:

2. = —(AQ™TAH ¢ .= Q TAN(AQTI AN e (19)

From here it is a simple step to evaluate the quadratic form at the critical point:

Q) = %ct(AQ_lAt)‘lc (20)
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8.2 Example

For the common example in Eqs(3,4) we find
1
AQ A =[a b] [ e

This yields immediately

AB¢? 2ABc

_ =g, = ——2PC 21
Q) = 55 A Ae=Z =~ B A (21)

Thus the theorem that 8Q(z.)/0cq = OF/dco = —A4 at the critical point is satisfied in this example.

9 Linear Form - Quadratic Constraint

9.1 Result

The objective function is assumed to be linear: f(x) = A;2' = Az. Here A is a row vector. The
constraint has the form ¢(z) : $2'Bz = ;B;;z‘s/ = c. In matrix form, the objective function to be
optimized is

Fz;)) = Az — )\(%xth — o) (22)
This leads to the linear equation
VF(z;\) = A" —ABz =0=2 = %B—lAt
The normalization condition is used to determine the Lagrange multiplier:
AB At = 2¢)?

From this we obtain immediately for the stationary value

f(z) = V2c VAB-1 At

9.2 Example

As an example, we dualize the canonical example followed through Section 2 - Section 4. We
will attempt to optimize the linear function f(x,y) = az + by subject to the quadratic constraint
Ax? 4+ By? = ¢. The modified objective function is

F(z,y,)\) = (azx + by) — A\(Az? + By* — ¢)

From this we easily compute

0 a
6_,’1;' : a — 24z = 0 => z = QA—A
0 b
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The Lagrange multiplier A is determined by plugging these expressions for £ and y into the constraint

equation:
a \2 b2 1?2 ABec
A(zA_A) +3(2,\B> ¢ = (ﬁ) " @B+ 10’4

From this we easily determine the values of z and y in terms of the parameters a,b; A, B and the
value of the constraint ¢, and from these values the stationary value of the linear function:

a2 b2

f(z(e),y(c)) = Ve Tt 5= o

10 Quadratic Form — Quadratic Constraint

10.1 Result

In this case the objective function is the quadratic form in n variables (z!,z2,---,z™) that is easily
expressed in matrix form f(z) = ztAz = A;jz'z7 The constraint is represented by the quadratic
form ¢(z) = 2'Bx — ¢ = B;jz*z? — ¢ = 0. To be specific we assume that both matrices 4 and B are
positive definite. The optimization problem assumes canonical form

F(z;\) = 2' Az — M(@'Bz — ¢) = 2 (A — AB)z + Xc (23)
Taking the derivatives 8/dx! leads to the eigenvalue equation
(A=AB)z =0 (24)

We assume further that the positive definite matrices A and B have nondegenerate eigenvalues
Ao With corresponding eigenvectors z(a). These eigenvectors are orthogonal with respect to the
matrices A and B (i.e., 2t (a)Az(8) = 0,z (a)Bz(8) = 0,a # ). We normalize the eigenvectors so
they satisfy the constraint, so that z!(a)Bz(a) = c. For the eigenvector z(a) normalized to satisfy
the constraint, the eigenvalue equation (24) gives

' (a)(A = Ao B)z(a) = ' (a)Az(a) — 2t () \a Bx(a) = 2t (@) Az(a) — Aac =0 (25)

The result is as follows: Each eigenvector of the eigenvalue equation (A — AB)x = 0 provides a
stationary value for the objective function. The critical value of the objective function, for the
eigenvector z(a), is Aqc.

10.2 Solving the Eigenvalue Equation

The eigenvalue equation (A — AB)z = 0 can be solved as follows. We first assume that the real sym-
metric n X n matrix B is nonsingular. This matrix is written as B = B'/2B'/?_ where B'/? =“\/B”
(see below). The eigenvalue equation can then be expressed

BY2(B712AB~Y% _ XI)B'/?3 =0 (26)
The closely related eigenvalue equation
(A= X)y=0 (27)

is solvable with standard routines. Here A’ = B~'/2AB~'/2 and y = B'/2z. The eigenvectors y(a)
are orthogonal with respect to both matrices A’ and I. The eigenvectors z(a) = B~'/?y(a) are
orthogonal with respect to both matrices A and B.
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10.3 Computing the Square Root of a Matrix

To compute the square root of the matrix B we proceed as follows. The eigenvectors z(«) of B
(normalized to unity) are columns in the real orthogonal transformation S that diagonalizes B

A1
1 Az
S 'BS=D D= _ (28)
An

By inverting this relation we find an expression for B in terms of an orthogonal matrix S and
a diagonal matrix D: B = SDS~!. In particular, B> = SDS~!SDS~! = SD?S~! and B" =
(SDS—1)" = SD"S~1. More generally

()
» » f() »
f(B) = {(SDS™Y) =Sf(D)S ' = § . s

f(An)

The square root of B is simply obtained by taking the square roots of the eigenvalues on the diagonal
of the diagonal matrix D. Since each eigenvalue has two square roots, the positive definite n x n
matrix B has 2™ square roots, only one of which is positive definite.

10.4 Stability of Stationary Values

The objective function f(z) = z'Az has different stability properties in the neighborhood of each
eigenvector xz(a). Order the eigenvalues in a monotonic increasing way: 0 < Ao < A1 < A <
-+ < Ap—1. (Beware: Change in numbering!) In the neighborhood of the eigenvector z(i), the
function has critical value c)\; and is a Morse i-saddle. To show this, we observe that there are
n — 1 independent variables, since there are n variables and one constraint. We expand in the
neighborhood of a critical point at x(4) using the n — 1 orthogonal eigenvectors:

X =rz(i) + Z aqaz(a) (29)
aFi

The n — 1 amplitudes a, (@ # i) are the independent small coordinates of the objective function
evaluated in the neighborhood of the critical point x(7). The renormalization amplitude r has been
introduced to preserve the normalization of the vector. Normalization requires

Xt'BX :r2+Za§ =c
aFi
In the neighborhood of the critical value cA(¢) the shape of the function is
X'AX =N+ ) Aaal =chi+cd (Ao —X\) al (30)
aFi aFi

The quadratic form is a Morse i-saddle, as there are i (= 0,1,2,---) negative signs in this quadratic
form: « =0,1,2,---,i — 1.
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Example: For the matrices A and B

2 1
A= 3 and B = 1

the eigenvalues and eigenvectors are

Figenvalues: A =2 M =3 A =5

1 0 0 (31)
Eigenvectors : 0 1 0
0 0 1

The stability properties associated with eigenvalue A\; are determined by perturbing around this
eigenvector:

0 T
1| —>X=]r
0 z

The amplitudes  and z are assumed to be small (this is a local expansion), and the amplitude of
the original eigenvector, r, is determined by 72 + 2% + 22 = 1 (¢ = 1). The objective function in the
neighborhood of the critical point (0, 1,0)¢ is

X'AX =3r? 4+ 22° + 522 =34 (2 - 3)2% + (5 — 3)2°

In the neighborhood of A; the quadratic form is locally a Morse 1-saddle.

11 Data Fitting

It happens often that we are called upon to find a “best fit” straight line to messy data. The old
standby for this trial-by-fire is the Least Squares data fitting procedure. This works well when
there are error measurements in the observed dependent variable (aka y) but not errors in the
determination of the independent variable z.

This can be justified, to a very limited extent, when y is “determined” by z. However, it often
happens that the two variables are correlated. In such cases both may possibly be determined by
yet a third variable, not known. In such cases it is more than reasonable to assume that there are
measurement errors in both z and y.

11.1 Measurement Errors: The Covariance Matrix

We will formulate the Least Squares fitting problem when measurement errors can be anticipated
in all variables z!. We assume that many measurements are made around a single data point whose
“true value” (zg,x2,---,zd) is not known but also doesn’t vary from measurement to measurement.
A series of measurements (q), @ = 1,2,---,n — 00 allows us to construct both an estimate for the
coordinates of the “true” value

i 1,
zh = lim — Zlm’(a) (32)
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as well as a measurement covariance matrix based on this estimate

n

Z((Jf(a) - xo)i(m(a) - xo)j ={(z - Hfo)i(m - mo)j) =g" (33)

a=1

(Az*Az?) = lim

n—oo 1, —

It will be assumed that the covariance matrix is unchanged throughout the region in which a linear
model to describe the data is to be formulated.

Remark: The covariance matrix is actually a contravariant second order tensor. By rights it
should be called a contravariance matrix.

11.2 Metric Matrix

Ultimately, we want to determine the distance between a point and a straight line. This means that
we need to be able to measure distances in a plane. In short, we need to devise a metric tensor.
Standard tensor calculus (covariance/contravariance) arguments suggest that g;;, the inverse of the
covariance matrix g¥ = (Az?Az’), is a suitable candidate. We adopt g;; as the metric tensor in the
measurement space. The square of the distance between two points () and z(,) is

8" = 9i (@) —2) (@) = 2(9))
Our final result will depend on the covariance matrix g/ and not its inverse, the metric tensor g;;.

The latter is simply a useful means to a “dimensionally correct” end.

11.3 Distance Between a Point and a Line

A line in a plane is determined by one constraint. More generally, an n — k dimensional subspace in
R™ is defined by k linear constraints. We illustrate how to compute the distance between a point and
a linear subspace in the case that the subspace is defined by a single constraint. The generalization
is straightforward.

The constraint is chosen in the form

Az +¢c=0 (34)

There are n + 1 coefficients A; and ¢ in this constraint equation. The equation is scale-invariant, so
some convenient relation can be placed on these coefficients at some later time.
The distance between a point z(,) and the surface A;z* +c=01s

5% = gij (& — x(r))' (& — 2(r))? (35)
This is minimized as usual. A Lagrange multiplier is used to introduce the constraint
s = gij (@ — 2() (@ — 2(r))! = MAiz’ +¢)
The equation is subtly rewritten for simplicity
8% = gij(z — 30 (z — () — MAj(z — 3())" + Aimfr) +¢)
We introduce new variables y* = (z — 2(,))* and ¢,y = c+ Aﬂb) to rewrite this equation in simpler

form o .
s% = gy + MAiy' + ¢(r))
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Proceeding in the usual fashion, it is a simple calculation to get the result

2, - (36)
(r) — giinAj

Here d(,) is the minimum distance of the measurement z(,) from the line Azt +c=0.

11.4 Least Squares

The line that minimizes the sum of the squares of the distances of the n observations z(,y from it is
determined by minimizing the sum

(A;xt | +c)?
(r)
Z d(") Z ”AzA] (37)
At this stage we can proceed by brute strength (ugly!) or elegantly. We choose the latter strategy.

e First, define the coordinates of the centroid of the measurements, so that

1 n
r=1
Then we shift the origin of the coordinates to the centroid. In particular, this guarantees that

the constant ¢ is zero.

e Second, we use the observation that the linear constraint equation is scale-invariant to impose
a nonlinear condition that scales the coefficients of the line. This is the quadratic constraint

giinAj =1
This constraint will be imposed using Lagrange multipliers (a second time!).

The equation to be optimized is

F(z;)) = [A,-(;cér) . :1:)] ~ A (9944 —1) = (@) — B)i (20 — B) AsA; — A (97 4,45 — 1)

1 r=1
(38)
Recalling that ¢ = (Az?Az7), the eigenvalue equation that results from searching for the stationary
solutions of Eq(38) has the form

n 2 n

T

(Z(mm —2) (z(r) — 7) A(A:ﬂ’AacJ)) A;j=0 (39)

r=1

The smallest eigenvalue A¢ determines the eigenvector A;(0) that defines the line (hyperplane)
through the origin (mean value of measurements) that minimizes the sum of the squared distances
from the observations to that line. Since the (second) constraint is +1 (g% A;A; = +1), the eigenvalue
is the sum of the squares of these distances.
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11.5 Goodness of Fit Test

The eigenvalue ) is actually the x? value that should be used to test for goodness of fit. If there are
n observations there are n — 2 degrees of freedom (two points determine the line perfectly). Thus,
if Ao > x%(n — 2, p) the model can be rejected with confidence level p. Otherwise, the model cannot
be rejected.

11.6 Elegant Formulation

These results can be put into elegant form by defining a second “measurement contravariance matrix”
by

1 & L L
GY=— > (@) — )iz — z) (40)
r=1
With these definitions the expression that determines both the best fit line and the statistic that
determines how good the fit really is has the hard-to-forget form

(nG" — \g") A; =0 (41)
Applications Involving Temperature

12 Equilibrium Thermodynamics

12.1 Formulation

Equilibrium Thermodynamics can be described in a number of different ways. In these sections we
describe this subject in two different ways, one of which is more physical than the other. One involves
minimizing energy subject to the constraint that entropy is fixed. The dual approach involves
maximizing entropy subject to the constraint that energy is conserved. The second formulation is
much more physical, since “energy is conserved, while entropy always increases.” However, we will
follow this approach in the following section, dealing with statistical mechanics. Therefore we adopt
the less physical approach of minimizing energy subject to the constraint of fixed entropy. This is
the traditional formulation of classical thermodynamics.

12.2 Fluctuations Around Equilibrium

We begin by placing two systems into contact with each other, and both inside a box. Nothing can
get into or out of the box: not entropy (if you believe that ...), particles of any type, other extensive
variables. The volume of the box is fixed. However, the two systems in the box can exchange
entropy, volume, particles, other extensive variables.

The objective is to minimize the total energy, subject to the constraints that all other extensive
variables are conserved. The energy is additive, so that we can write

Usot =U(1)(Sq), Vo), Ny, Eqy) + Uiy (S(2), Viz), N2y, Ezy) (42)
Here Eﬁ) represents any other extensive variable required to specify the internal energy of the first

system.
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Exchanges of entropy, particle number, volume, etc. can take place between the two systems in
the box. We assume that all the extensive quantities are conserved: whatever goes into one system
comes out of the other. The fluctuation quantities obey, in an obvious notation:

(55(1) + 55(2) = 0
Vi) + Vy = 0
5N(1) + 6N(2) = 0
(5Ea) + 5E(a2) = 0

The energy minimization problem can now be formulated as follows. We allow the extensive
arguments to fluctuate around their equilibrium values, and look for values of the fluctuations that
minimize the internal energy. Specifically, the objective function is

Uit = U(l)(S(l) + 55(1), V(l) + (5V(1),N(1) + (5N(1),Ea) + (5EE11))+
U(z)(S(z) + 082y, Vi2) + 0V(a), Noy + 5N(2),EE)‘2) + (SEF‘Z))
—)\5(55(1) + (55(2) -0) — Av((SVO) + 5V(2) -0)

—AN(6N@1) + 6Ny —0) — -+ — )‘a((SEEIl) +6E212) -0)

We proceed in the usual fashion. We note that 0U/34S(;y = 0U/dS(1), and so on for all the
fluctuation quantitites. The following minimization conditions result:

(43)

— = g = =
= )\V =
V) V2
44
dE? . dES

1 2)

12.3 Lagrange Multipliers as Intensive Thermodynamic Variables

From this we conclude that under equilibrium conditions the “slopes” of the internal energy functions
of the two systems must be the same for all intrinsic variables. The slopes are

oU

5 = T

oU

& = —P

(45)

U _

aN M

ou

9Ea '@
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The derivative of the internal energy with respect to an extensive variable E¢ is the conjugate
intensive thermodynamic variable. These conjugate (Extensive, intensive) pairs of variables are
(S, T),(V,—-P),(N,pu),---,(E*,i,), where T is the temperature, P the pressure, u the chemical
potential in the Energy representation. These identifications of intensive variables are made using
the First and Second Laws of Thermodynamics:

dU = TdS — PdV + pdN + -+ - + iodE* (46)

and comparing the Lagrange multipliers with the partial derivatives of U: for example, (0U/9S) =T,
etc. The partial derivatives are taken holding all other extensive thermodynamic variables constant.

12.4 Stability

The stability properties at an equilibrium are determined by expanding the potential function out
to second order. We find

02U, U,
d(z)Utot = ai(l)ﬁ(sEa)(SEﬁ) + . (Z)ﬁ 5E212)(5Eé32) (47)
8E(1)6E(1) 6E(2)8E(2)
Since 6Eﬁ) = —(SE&) def 0E%, the second variation can be written in the more streamlined form
0%U 0%U
AUy, = { Wy O } SECSEP (48)
8E(1)6E(1) 8E(2)6E(2)

Both matrices within the curly brackets { } must be positive definite. This is a thermodynamic sta-
bility condition. The thermodynamic stability condition is the basis for all existing thermodynamic
inequalities.

13 Statistical Mechanics

13.1 Shannon’s Information Function

Shannon devised a measure of information for his study of the capacity of channels to transmit

messages. He assumed that a finite number of states, ¢ = 1,2,---,n were available to a system,
and that state ¢ could occur with probability p;. He desired to construct an “information function,”
H(p1,p2,---,pn) that measured the “information” in the system. This measures the amount of

information required to gain perfect understanding: to move to a state where one probability is 1
and all the remaining probabilities are 0.
Shannon demanded that the function H(p) satisfy three reasonable requirements:

1. H is a continuous function of all the probabilities.

2. If all the n probabilities are equal, p; = %, H is a monotonic increasing function of n: n' >
n = H(n') > H(n).

3. If a choice be broken down into two successive choices, the original H should be the weighted
sum of the individual values of H (H is subadditive).
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Figure 9: The function H obeys the subadditive property.

The last assumption is illustrated in Fig. 9. The only function that obeys these three properties is

n
H(p1;p27"'7pn) :_kzpzlogpl k>0 (49)
i=1
If the logarithms are taken base 2 and k = 1, information is measured in binary digits, or bits, a
term due to Tukey. This is the preference of anyone working in information theory/cummunications
theory. If natural logarithms are used and k = kg = 1.38 x 10716 erg/°K, H reduces to the statistical
mechanical entropy function.

In the case of two states with p; = p and ps = ¢, p+ ¢ = 1, Figure 10 provides a plot of H(p, q).
The maximum occurs at p = ¢ = 3 and is H(%, 1) = 1 (bit).
13.2 Relation with Boltzmann’s H-Function

Functions of the form Y p;logp; had previously been studied. Boltzmann had introduced his “H-
Function” to study the equilibration of a gas of atoms:

H(t) = /d3x/d3v f(x,v,t)1log f(x,v,1) (50)

Here f(x,v,t) is interpreted as the probability distribution function for a gas atom/molecule as a
function of position x, velocity v, and time ¢. As a probability distribution, the function f(x,v,t)

satisfies
/d3x/d3v fx,v,t)y=1 (51)

As such, f(x,v,t) has an interpretation as p; above, with 4 now a continuous index. Boltzmann was
able to “prove” the “Boltzmann H-Theorem”:

dH(t) _
at =
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H(p,q) = —(plog,(p) + qlog,(q))
Figure 10: The function H has a maximum when all the probabilities are equal.

If Boltzmann’s function were defined with a negative sign, this result would be interpreted as a
“proof” that entropy is always increasing. This is not possible: entropy increases to the most prob-
able state, and thereafter fluctuations from this most probable state act to (momentarily) decrease
entropy. It is impossible for monotonic increase of entropy to be compatible with fluctuations around
equilibrium.

13.3 Application to Statistical Mechanics

The most likely state of a physical system can be determined by maximizing the entropy S =
—k Y pilogp; subject to constraints. Four typical constraints are:

> Di =1

y b = K
% Z, Vi =V (52)
> » Ny = N

The first constraint is that the probabilities p; must behave like probabilities. The second, third, and
fourth are of physical origin. The first of these assumes the average energy E is known. The other
two assume that the average volume is V and the average particle number is N. For example, if two
systems are separated by a flexible membrane, different states of one system, the one of interest,
could have different volumes, while the long term average volume is known.

These constraints on the entropy maximization problem are imposed in the canonical way. A
modified objective function is established:

S=—k Zpi Inp;—(Xo—Fk) (Zpi - 1)_/\E (szEz - E) —Av (szVz - V) —AN (ZpiNi - N)

(53)
A constant term —k is added to the Lagrange multiplier A\¢ for later convenience. This expression
is differentiated with respect to each p; to obtain

S
Op; B

—k(ln(p,) + ].) — ()\0 — k) —XgE; — MV, = ANN; =0 (54)
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This gives immediately an expression for k ln p;:
klnp; = =X — ApE; — AvV; — ANN; (55)

From this the probabilities are immediate:

p; = e 20/k o= (AEEi+Av Vit AN Ni)/k (56)

13.4 Partition Functions

The Lagrange multiplier )¢ is a normalization constant, and may be determined by summing all the
possibilities:
o/k = Y T OEBEW VAN — Z(xp, Ay, Aw) (57)

k3

The function Z resulting from the sum is called the partition function. The partition function can
be used as a generating function for expectation values. It is a function of the Lagrange multipliers.
For example, if we differentiate the (natural) logarithm of Z with respect to one of its arguments,
we obtain

(—E: —(ABEi+Av Vi+AnN;) [k —(AeEi+Av Vi+ AN N;) /k
OI(z) _ B F/0e SRIIE == -
O\E Zz e~ (AEEi+Av Vi+AnNi)/k k & e k &
(58)
In simpler form, this is
oln(2) -
—k =F 59
P (59)

Similar results hold for all the other Lagrange multipliers.
Since In(Z) = Ao/k, this last result becomes

0o -
2 _F
g (60)

These results lead to a very nice interpretation of the Lagrange multipliers.

13.5 Interpretation of the Lagrange Multipliers

The entropy function S is a function of the values of the constraints: S = S(E,V, N). The differential
of S can be expressed in terms of the differentials of the expectation values, each multiplied by the
conjugate Lagrange multiplier, as shown in Section 5. We find immediately

dS = A\gdE + \ydV + AydN (61)

This can be compared with the equilibrium thermodynamic expression for the First and Second
Laws of Thermodynamics (c.f., Equ (46))

1 - P _ u. -
dS = de—F TdV — ?dN (62)
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to give an immediate interpretation of the Lagrange multipliers in the Entropy representation:

1
)\E‘ = @
Ay = =

T, (63)
A = —-L

T 1P
_ Y o/

Ao = kln(Z(T,T, T))

Remark: The Lagrange multipliers in (45) and (63) differ. In both cases they are intensive
thermodynamic variables conjugate to extensive thermodynamic variables. However, they are con-
jugate in two different representations. In (45) they are conjugate in the Energy representation (46).
In (63) they are conjugate in the Entropy representation (62). In either case the Second Law of
Thermodynamics (46,62) is satisfied.

13.6 “Entropy of a State”

The expectation values of E,V, N, and the most probable value of the entropy, are

> pi E; = E

; P Vi =V
%l zz N; = N (64)
Zi bi ( k ln(p,-)) = Smost likely

In view of these analogies, it is not at all unreasonable to regard —kIn(p;) as the “entropy” of the ith
state. We adopt this convention. Then from the differential relation (53) defining the constrained
probabilities, we find

1 P "
kln(p;) = S; TE, + TV, TN, (65)

As a result, we can write the probability p; in the unforgettable way as
p; ~ e Silk (66)

The probabilities are normalized in the usual way
e—Silk

pi= g = (67)

13.7 Quantum Statistical Mechanics

Relatively little has to be done to extend the results above, developed for classical statistical me-
chanics, into the realm of quantum statistical mechanics. The differences are

1. The probabilities p; are replaced by a density operator p.

2. Sums over probabilities are replaced by the traces of the product of the density operator
with an operator representing the appropriate observable: . p;E; — Tr pH where H is the
Hamiltonian (energy operator).
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3. An entropy operator S is defined by

N . 1 -~ P . TR
S——klnp—TH-{- TV_TN (68)
4. The generalization of (66) is
. e‘S —(LH+E2V-£N)/k—In(Z)
p=— =€ 'T T T (69)

Remark: In the case that only the expectation of the energy is known, the density operator

reduces to N
e—S/k

PZT

where 8 = 1/kT. In case H is diagonal, these are the usual Boltzmann factors.

— o R/ Ty o R/ o o BH
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