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Chaos and Attractors

Robert Gilmore
Physics Department, Drexel University, Philadelphia, PA 19104

1 Introduction

Chaos is a type of behavior that can be exhibited by a large class of physical systems and math-
ematical models of them. These systems are deterministic. They are modeled by sets of coupled
nonlinear ordinary differential equations (ODEs)

b= 2= fiaso 1)
called dynamical systems. The coordinates z designate points in a state space or phase space.
Typically € R" or some n-dimensional manifold for some n > 3, and ¢ € R* are called control
parameters. They describe parameters that can be controlled in physical systems, such as pumping
rates in lasers or flow rates in chemical mixing reactions. The most important mathematical property
of dynamical systems is the uniqueness theorem which states that there is a unique trajectory through
every point at which f(z;c¢) # 0. In particular, two distinct periodic orbits cannot have any points
in common.

The properties of dynamical systems are governed, in lowest order, by the number, stability, and
distribution of their fixed points, defined by &; = fi(z;¢) = 0. It can happen that a dynamical
system has no stable fixed points and no stable limit cycles [z(t) = z(t +T'), some T' > 0, all ¢]. In
such cases, if the solution is bounded and recurrent but not periodic, it represents an unfamiliar type
of attractor. If the system exhibits “sensitivity to initial conditions” [|z(t) — y(t)| ~ e*t|z(0) — y(0)|
for |2(0) — y(0)] = € and A > 0 for most z(0)] the solution set is called a “chaotic attractor.” If the
attractor has fractal structure it is called a “strange attractor.”

Tools have been developed to study strange attractors that depend on three types of mathematics:

e geometry
e dynamics
e topology

Geometric tools attempt to study the metric relations among points in a strange attractor. These
include a spectrum of fractal dimensions. These real numbers are difficult to compute, require very
long, very clean data sets, provide a number without error estimates for which there is no underlying
statistical theory, and provide very little information about the attractor.

Dynamical tools include estimation of Lyapunov exponents and a Lyapunov dimension. They
include globally averaged exponents and local Lyapunov exponents. These are eigenvalues related
to the different stretching (A > 0) and squeezing (A < 0) eigendirections in the phase space. To
each globally averaged Lyapunov exponent A;, Ay > Ay > ... > A, there corresponds a “partial
dimension” ¢;, 0 < ¢; <1, with ¢, = 1 if A; > 0. The Lyapunov dimension is the sum of the partial
dimensions dy, = Z?:l €;. That the partial dimension ¢; = 1 for A; > 0 indicates that the flow is
smooth in the stretching (\; > 0) and flow directions and fractal in the squeezing (A; < 0) directions



with €¢; < 1. Dynamical indices provide some useful information about a strange attractor. In
particular, they can be used to estimate some fractal properties of a strange attractor, but not vice
versa.

Topological tools are very powerful for a restricted class of dynamical systems. These are dy-
namical systems in three dimensions (n = 3). For such systems there are three Lyapunov exponents
A1 > A2 > A3, with Ay > 0 describing the stretching direction and responsible for “sensitivity to
initial conditions,” Ay = 0 describing the direction of the flow, and A3 < 0 describing the squeezing
direction and responsible for “recurrence.” Strange attractors are generated by dissipative dynami-
cal systems, which satisfy the additional condition A\; + A2 + A3 < 0. For such attractors e; =e; =1
and e3 = A;/|A3| by the Kaplan-Yorke conjecture, so that dr, =2+ €3 =2+ A1 /|A3]-

A number of tools from classical topology have been exploited to probe the structure of strange
attractors in three dimensions. These include: the Gauss linking number; the Euler characteristic;
the Poincaré-Hopf index theorem; and braid theory. More recent topological contributions include:
several definitions for entropy; the development of a theory for knot holders or braid holders (also
called branched manifolds); the Birman-Williams theorem for these objects; and relative rotation
rates, a topological index for individual periodic orbits and orbit pairs.

Three dimensional strange attractors are remarkably well understood. Those in higher dimen-
sions are not. As a result, the description that follows is largely restricted to strange attractors
with dy, < 3 that exist in R? or other three-dimensional manifolds (e.g., B2 x S'). The obstacle to
progress in higher dimensions is the lack of a higher-dimensional analog of the Gauss linking number
for orbit pairs in R3.

2 Overview
The program described below has two objectives:

e Classify the global topological structure of strange attractors in R3;

e Determine the perestroikas that such attractors can undergo as experimental conditions or
control parameters change.

Four levels of structure are required to complete this program. Each is topological. Each is dis-
cretely quantifiable. This provides a beautiful interaction between a rigidity of structure, demanded
by topological constraints, and freedom within this rigidity. These four levels of structure are:

1. Basis sets of orbits
2. Branched manifolds or Knot holders
3. Bounding tori

4. Embeddings of bounding tori.

3 Branched Manifolds: Stretching and Squeezing

A strange attractor is generated by the repetition of two mechanisms: stretching and squeezing.
Stretching occurs in the directions identified by the positive Lyapunov exponents and squeezing
occurs in the directions identified by the negative Lyapunov exponents. In R? there is one stretching
direction and one squeezing direction.



boundary
layer

St
squeeze Teten

(b)

()

Figure 1: A common stretch and fold mechanism generates many experimentally observed strange
attractors. Reprinted with permission from R. Gilmore and M. Lefranc, The Topology of Chaos,
NY: Wiley, 2002.

A simple stretch and squeeze mechanism that Nature appears very fond of is illustrated in Fig.
1. In this illustration, a cube of initial conditions at (a) is advected by the flow in a short time to (b).
During this process the cube is deformed by being stretched (A; > 0). It also shrinks in a transverse
direction (A3 < 0). During the initial phase of this deformation two nearby points typically separate
exponentially in time. If they were to continue to separate exponentially for all times the invariant
set would not be bounded. Therefore this separation cannot continue indefinitely, and in fact it must
somehow reverse itself after some time because the motion is recurrent. The mechanism shown in
Fig. 1 involves folding, which begins between (b) and (¢) and continues through to (d). Squeezing
occurs where points from distant parts of the attractor approach each other exponentially, as at (d).
Finally the cube, shown deformed at (d), returns to the neighborhood of initial conditions (a). This
process repeats itself and builds up the strange attractor. As can be inferred from this figure, the
strange attractor constructed by the repetitive process is smooth in the expanding (\;) and flow
(A2 = 0) directions but fractal in the squeezing (\3) direction. The attractor’s fractal dimension is
€1+ €3+ €3 =2+ €3 =2—|—)\1/|)\3|.

Figure 1 summarizes the boundedness and recurrence conditions that were introduced to define
strange attractors, and illustrates one stretching and squeezing mechanism that occurs repetitively
to build up the fractal stsructure of the strange attractor and to organize all the (unstable) periodic
orbits in it in a unique way. The particular mechanism shown in Fig. 1 is called a stretch and fold
mechanism. Other mechanisms involve stretch and roll, and tear and squeeze.

The stretch and squeeze mechanisms are well summarized by the cartoons shown in Fig. 2. On the
left a cube of initial conditions (top) is deformed under the flow. The flow is downward. Stretching
occurs in one direction (horizontal) and shrinking occurs in a transverse direction (perpendicular to
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Figure 2: Left: The stretch mechanism is modeled by a two-dimensional surface with a splitting
point singularity. Right: The squeeze mechanism is modeled by a two-dimensional surface with a
branch line singularity. Reprinted with permission from R. Gilmore and M. Lefranc, The Topology
of Chaos, NY: Wiley, 2002.

the page). In the limit of extreme shrinking (A3 — —“00”) the dynamics of the stretching part of
the flow is represented by the two-dimensional surface shown on the bottom left. This surface fails
to be a manifold because of the singularity, called a splitting point. This singularity represents an
initial condition that flows to an unstable fixed point with at least one stable direction. On the right
(squeezing) two distant cubes of initial conditions (top) in the flow are deformed and brought to each
other’s proximity under the flow (middle). In the limit of extreme dissipation, two two-dimensional
surfaces representing inflows are joined at a branch line to a single surface representing an outflow.
This surface fails to be a manifold because of the branch line, which is a singularity of a different
kind. Points below the branch line in this representation of the flow (on the outflow side of the
branch line) have two preimages above the branch line, one in each inflow sheet. This structure
generates positive entropy.

A Dbeautiful theorem of Birman and Williams justifies the use of the two cartoons shown at the
bottom of Fig. 2 to characterize strange attractors in R3. As preparation for the theorem, Birman
and Williams introduced an important identification for the nongeneric or atypical points that “are
not sensitive to initial conditions”

T~y if jz(t) —y(t)] =% 0 (2)

That is, two points in a strange attractor are identified if they have asymptotically the same future.
In practice, this amounts to projecting the flow down along the stable (A3 < 0) direction onto a
two dimensional surface described by the stretching (A1 > 0) and the flow (A2 = 0) directions. This



surface is not a manifold because of lower dimensional singularities: splitting points and branch lines.
The two-dimensional surface has many names: knot holder (because it holds the periodic orbits that
exist in abundance in strange attractors); braid holders; templates; branched manifolds. The flow,
restricted to this surface, is called a semiflow. Under the semiflow, points in the branched manifold
have a unique future but do not have a unique past. The degree of nonuniqueness is measured by
the topological entropy of the dynamical system.

The Birman-Williams theorem is:

Theorem: Assume that a flow ®;

e on R? is dissipative (A1 > 0,X2 = 0,X3 < 0 and A; + A2 + A3 < 0)

e Generates a hyperbolic strange attractor (the eigenvectors of the local Lyapunov exponents
A1, A2, Az span everywhere on the attractor).

Then the projection (2) maps the strange attractor S.A to a branched manifold BM and the flow &,
on SA to a semiflow ®; on BM in R3. The periodic orbits in S.4 under ®; correspond 1:1 with the
periodic orbits in BM under ®; with perhaps one or two specified exceptions. On any finite subset
of orbits the correspondence can be taken via isotopy.

The beauty of this theorem is that it guarantees that a flow ®; that generates a (fractal) strange
attractor SA can be continuously deformed to a new flow ®; on a simple two-dimensional structure
BM. During this deformation periodic orbits are neither created nor destroyed. The uniqueness
theorem for ODEs is satisfied during the deformation so orbit segments do not pass through each
other. As a result, the topological organization of all the unstable periodic orbits in the strange
attractor is the same as the topological organization of all the unstable periodic orbits in the branched
manifold. In fact, the branched manifold (knot holder) defines the topological organization of all the
unstable periodic orbits that it supports. Topological organization is defined by the Gauss linking
number and the relative rotation rates, another braid index.

The significance of this theorem is that strange attractors can be characterized — in fact classified
— by their branched manifolds. Figure 3 shows a branched manifold “for a figure 8 knot” as well
as the figure 8 knot itself (heavy curve). If a constant current is sent through a conducting wire
tied into the shape of a figure 8 knot, a discrete countable set of magnetic field lines will be closed.
These closed field lines can be deformed onto the two dimensional surface that is shown in Fig. 3.
Each of the eight branches of this branched manifold can be named. One way to do this specifies
the two branch lines that are joined by the branch in the sense of the flow: for example (aa) and
(Ba) (but not (af)). Every closed field line can be labeled by a symbol sequence that is unique up
to cyclic permutation. This symbol sequence provides a symbolic name for the orbit. For example
(ac)(aB)(Bb)(ba) is a period-four orbit. The structure of a branched manifold is determined in part
by a transition matrix T'. The matrix element Tj; is 1 if the transition from branch ¢ to branch j is
allowed, 0 otherwise. The transition matrix for the figure 8 branched manifold is shown in Fig. 3.

The Birman-Williams theorem is stronger than its statement. More systems satisfy the statement
of the theorem than satisfy the assumptions of the theorem. The figure 8 knot and its attendant
magnetic field is not dissipative — in fact, it isn’t even a dynamical system, yet the closed loops
can be isotoped to the figure 8 knot holder. There are other ways the Birman-Williams theorem is
stronger than its statement.

It is apparent from Fig. 3 that the figure 8 branched manifold can be built up Leg0© fashion
from the two basic building blocks shown in Fig. 2. This is more generally true. Every branched
manifold can be built up, Leg0© fashion, from the stretch (with a splitting point singularity) and
the squeeze (with a branch line singularity) building blocks, subject to the two conditions:

1. outputs flow to inputs
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Figure 3: Figure 8 knot (dark curve) and the figure 8 branched manifold. Transition matrix for the
eight branches of the figure 8 branched manifold. Flow direction is shown by arrows. Reprinted
with permission from R. Gilmore and M. Lefranc, The Topology of Chaos, NY: Wiley, 2002.



Table 1: Four sets of equations that generate strange attractors.

Dynamical System Ordinary Differential Equations Parameter Values
T = —y-—=z

Rossler 9 = z+ay (a,b,c) = (2.0,4.0,0.398)
2 = b+z(z—c)

Duffing v =y 5 . (5, A,w) = (0.4,0.4,1.0)
gy = —0y—z°+x+ Asin(wt) e R
P = by+(c—dy2)m (b,C,d,A,(A))

van der Pol o Asin(wt) =
y T+ Asinlw (0.7,1.0,10.0,0.25, 7/2)
r = —ox+oy

Lorenz Yy = Rr—y—uzz (R,0,b) = (26.0,10.0,8/3)
z = —bz+uwy

2. there are no free ends.

The figure 8 branched manifold is built up from four stretch and four squeeze building blocks. As a
result, there are eight branches and four branch lines.

Two often studied strange attractors are shown in Figs. 4 and 5. Fig. 4 shows (a) the Rossler
equations, (b) portions of the time traces z(t) and z(¢), and (c) the projection of the strange attractor
down onto the z-y plane. In the lower row are shown (d) a caricature of the flow, and (e) the knot
holder for the flow. A similar spectrum of features is shown in Fig. 5 for the Lorenz equations. The
knot holder in Fig. 5(e) is obtained from the caricature in Fig. 5(d) by twisting the right-hand lobe
by « radians.

Branched manifolds can be used to characterize all three dimensional strange attractors. Branched
manifolds that classify the strange attractors generated by four familiar sets of equations (for some
control parameter values) are shown in Fig. 6. The sets of equations, and one set of parameter
values that generate strange attractors, are presented in Table 1.

The beauty of this topological classification of strange attractors is that it is apparent, just by
inspection, that there is no smooth change of variables that will map any of these systems to any of
the others for the parameter values shown.

Branched manifolds can be described algebraically. In Fig. 7 we provide the algebraic description
of two branched manifolds. In Fig. 7(a) we show the branched manifold that describes experimental
data generated by many physical systems. The mechanism is a simple stretch and fold deformation
with zero global torsion that generates a typical Smale horseshoe. There are two branches. The
diagonal elements of the matrix identify the local torsion of the flow through the corresponding
branch, measured in units of 7. Branch 0 has 0 local torsion, and branch 1 shows a half twist and
haslocal torsion +1. The off-diagonal matrix elements are twice the linking number of the period one
orbits in the corresponding pair of branches. Since the period-one orbits in these two branches do not
link, the off-diagonal matrix elements are 0. The period one orbits in the branches labeled 1 and 2 in
Fig. 7(b) have linking number +1 so the off-diagonal matrix elements are 7'(1,2) = T'(2,1) = 2x +1.
The array identifies the order (above, below) that the two branches are joined at the branch line,
the smaller the value, the closer to the viewer. These two pieces of information, four integers in
Fig. 7(a) and eight in Fig. 7(b), serve to determine the topological organization of all the unstable
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Figure 4: (a) Rossler equations. (b) Time series 2(t) and z(t) generated by these equations, and
(c) projection of the strange attractor onto the x-y plane. (d) Caricature of the flow and (e) knot
holder derived directly from the caricature. Control parameter values (a, b, c) = (2.0,4.0,0.398).
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Figure 5: (a) Lorenz equations. (b) Time series x(t) and z(t) generated by these equations, and
(c) projection of the strange attractor onto the z-z plane. (d) Caricature of the flow and (e) knot
holder derived directly from the caricature by rotating the right hand lobe by 7« radians. Control
parameter values (R, o,b) = (26.0,10.0,8/3).



Figure 6: Branched manifolds for four standard sets of equations: (a) Rossler equations; (b) period-
ically driven Duffing equations; (c) periodically driven van der Pol equations; (d) Lorenz equations.
Reprinted with permission from R. Gilmore and M. Lefranc, The Topology of Chaos, NY: Wiley,
2002.

periodic orbits in any strange attractor with either branched manifold.

The periodic orbits are identified by a repeating symbol sequence of least period p, which is
unique up to cyclic permutation. The symbol sequence consists of a string of integers, sequentially
identifying the branches through which the orbit passes. For a branched manifold with two branches,
there are two symbols. The number of orbits of period p, N(p), obeys the recursion relation

k<p/2

pN(p) =20 — Y kN(k) (3)

1=k|p

Table 2 shows the number of orbits of period p < 20 for the branched manifolds with two and three
branches shown in Fig. 7. The number of orbits of period p grows exponentially with p, and the
limit A7 = lim,_, . log(N (p))/p defines the topological entropy hr for the branched manifold. The
limits are log(2) and log(3) for the branched manifolds with 2 and 3 branches, respectively. The
linking numbers of orbits up to period five in the Smale horseshoe branched manifold are shown in
Table 3. The table identifies each of the orbits by its symbol sequence, e.g., 00111.

Tables of linking numbers have been used successfully to identify mechanisms that Nature uses
to generate chaotic data. This analysis procedure is called Topological Analysis. Segments of data
are identified that closely approximate unstable periodic orbits that exist in the strange attractor.
These data segments are then embedded in R3. Each orbit is given a trial identification (symbol
sequence). Their pairwise linking numbers are computed either by counting signed crossings or
using the time-parameterized data segments and estimating the integers numerically using the Gauss
linking integral

ra t1 —rp(t2)
Link(A4, B) = o 7{]{ a(ts) =5 ()] drA(t1)xdrp(ta)

10



Figure 7: Branched manifolds are described algebraically. The diagonal matrix elements describe
the twist of each branch. The off-diagonal matrix elements are twice the linking number of the
period-one orbits in each of the two branches. The array describes the order in which the branches
are connected at the branch line. (a) Smale horseshoe branched manifold. (b) Beginning of a gateau
roulé branched manifold.

Table 2: Number of orbits of period p on the branched manifolds with 2- and 3- branches, shown in
Fig. 7. The integers N3(p) are constructed by replacing 2P by 3? in Equ. (3).

Period 2 Branches 3 Branches Period 2 Branches 3 Branches
P Na(p) Ns(p) P Na(p) Ns(p)
1 2 3 11 186 16104
2 1 3 12 335 44220
3 2 8 13 630 122640
4 3 18 14 1161 341484
5 6 48 15 2182 956576
6 9 116 16 4080 2690010
7 18 312 17 7710 7596480
8 30 810 18 14532 21522228
9 56 2184 19 27954 61171656

10 99 5880 20 52377 174336264
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Table 3: Linking numbers of orbits to period five in the Smale horseshoe branched manifold with
zero global torsion.

0 1 2 3 31 4, 45 45 55 51 55 52 b3 by
0O |00 0 0 0 0O 0 0 0O 0 0 0 0 O
1 (oo 1 1 1 2 1 1 2 2 2 2 1 1
2, 0L |01 1 2 2 3 2 2 4 4 3 3 2 2
3, 011 |01 2 2 3 4 3 3 5 5 5 5 3 3
3, 001 |01 2 3 2 4 3 3 5 5 4 4 3 3
4, 0111 |0 2 3 4 4 5 4 4 8 8 7 7 4 4
4, 0011 |0 1 2 3 3 4 3 4 5 5 5 5 4 4 (4)
4, 0001 [0 1 2 3 3 4 4 3 5 5 5 5 4 4
5, 01111(0 2 4 5 5 8 5 5 8 10 9 9 5 5
5, 011010 2 4 5 5 8 5 5 10 8 8 8 5 5
5, 00111(0 2 3 5 4 7 5 5 9 8 6 7 5 5
5, 00101|0 2 3 5 4 7 5 5 9 8 7 6 5 5
55 00011(0 1 2 3 3 4 4 4 5 5 5 5 4 5
55 0000L|0 1 2 3 3 4 4 4 5 5 5 5 5 4

This table of experimental integers is compared with the table of linking numbers for orbits with the
same symbolic name on a trial branched manifold. This procedure serves to identify the branched
manifold and refine the symbolic identifications of the experimental orbits, if necessary. This pro-
cedure is vastly overdetermined. For example, the linking numbers of only three low period orbits
serve to identify the four pieces of information required to specify a branched manifold with two
branches. Since six or more surrogate periodic orbits can typically be extracted from experimen-

tal data, providing ( 6 = 15 or more linking numbers, this Topological Analysis procedure has

2
built-in self-consistency checks, unlike analysis procedures based on geometric and dynamical tools.

4 Basis Sets of Orbits

A branched manifold determines the topological organization of all the periodic orbits that it sup-
ports. Whenever a low dimensional strange attractor is subjected to a Topological Analysis, it is
always the case that fewer periodic orbits are present and identified than are allowed by the branched
manifold that classifies it. This is the case for strange attractors generated by experimental data
as well as strange attractors generated by ordinary differential equations. The full spectrum occurs
only in the hyperbolic limit, which has never been seen.

The orbits that are present are organized exactly as in the hyperbolic limit — that is, as deter-
mined by the underlying branched manifold. As control parameters change, the strange attractor
undergoes changes (“perestroikas”). New orbits are created and/or old orbits are annihilated in di-
rect or inverse period-doubling and saddle-node bifurcations. The orbits that are present are always
organized as determined by the branched manifold. Orbits are not created or annihilated indepen-
dently of each other. Rather, there is a partial order (“forcing order”) involved in orbit creation and
annihilation. This partial order is poorly understood for general branched manifolds. It is much
better understood for the two-branch Smale horseshoe branched manifold.

The forcing diagram for this branched manifold is shown in Fig. 8 for orbits up to period eight.

12
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Figure 8: Forcing diagram for orbits up to period eight in the Smale horseshoe branched manifold.
Below is the sequence (“universal order”) in which orbits are created in the highly dissipative limit,
which is the logistic map.

It is typically the case that the existence of one orbit in a strange attractor forces the presence of
a spectrum of additional orbits. Forcing is transitive, so if orbit A forces orbit B (4 = B) and B
forces C, than A forces C: if A = B and B = C then A = C. For this reason it is sufficient to
show only the first order forcing in this figure. The orbits shown are labeled by their period and
the order in which they are created in a particular highly dissipative limit of the dynamics: the
logistic map (U-sequence order in Fig. 8). For example, 55 describes the second (pair) of period-five
orbits created in the logistic map in the transition from simple, nonchaotic behavior to fully chaotic
(hyperbolic) behavior.

The orbits in the forcing diagram are organized according to their one-dimensional entropy
(horizontal axis, U-sequence order) and their two-dimensional entropy (vertical axis). Nonchaotic
(“laminar”) behavior occurs at the lower left of this figure, where both entropies are zero. Fully
chaotic behavior occurs at the upper right, where both entropies are In(2). As control parameters
change, a dynamical system that can exhibit chaos generated by a stretch and fold mechanism follows
a path in the forcing diagram from the lower left to the upper right. Each such path is a “route to
chaos.” The Smale horseshoe mechanism exhibits many different routes to chaos: Each follows a
different path in the forcing diagram.

The state of a strange attractor at any stage in its route to chaos can be specified by a “basis
set of orbits.” This is a set of orbits whose presence forces the existence of all other orbits that
can concurrently be found in the attractor, up to any finite period. The basis set of orbits can be
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Figure 9: Three inequivalent canonical forms of genus eight are shown. Each is identified by a
“period 7 orbit” and its dual.

constructed algorithmically. The algorithm is as follows. Write down all the orbits that are present
in order of increasing two-dimensional entropy from left to right. For orbits with the same two-
dimensional entropy, order by increasing one-dimensional entropy. Remove the “highest” (rightmost)
orbit from this list, together with all the orbits that it forces. This is the first basis orbit. Of the
orbits remaining, again remove the rightmost and all the orbits that it forces. This is the second basis
orbit. Continue until all orbits have been removed. For any finite period, this algorithm terminates
because there is only a finite number of orbits. For example, if the orbit 55 is present as well as
all orbits with lower one-dimensional entropy, the basis set is 87 R, 7g, T4 F, 8 F, 8g,52. As control
parameters change, a strange attractor undergoes perestroikas that are quantitatively determined
by changes in the basis sets of orbits.

5 Bounding Tori

As experimental conditions or control parameters change, strange attractors can undergo “grosser”
perestroikas than those that can be described by a change in the basis set of orbits. This occurs
when new orbits are created that cannot be contained on the initial branched manifold — for example,
when orbits are created that must be described by a new symbol. This is seen experimentally in the
transition from horseshoe type dynamics to gateau roulé (“jelly roll”) type dynamics. This involves
the addition of a third branch to the branched manifold with two branches, as shown in Figs. 7(a)
and 7(b). Strange attractors can undergo perestroikas described by the addition of new branches to,
or deletion of old branches from, a branched manifold. These perestroikas are in a very real sense
“grosser” than the perestroikas that can be described by changes in the basis sets of orbits on a
fixed branched manifold.

There is a structure that provides constraints on the allowed bifurcations of branched manifolds
(creation/annihilation of branches) that is analogous to the constraints that a branched manifold
provides on the bifurcations and topological organization of the periodic orbits that can exist on it.
This structure is called a bounding torus.

Bounding tori are constructed as follows. The semiflow on a branched manifold is “inflated” or
“blown up” to a flow on a thin open set in R® containing this branched manifold. The boundary
of this open set is a two-dimensional surface. Such surfaces have been classified. They are uniquely
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tori of genus g, g = 0 (sphere), g = 1 (tire tube), g = 2,3,.... The torus of genus g has Euler
characteristic x = 2 — 2¢g. The flow is into this surface. The flow, restricted to the surface, exhibits
a singularity wherever it is normal to the surface. At such singularities the stability is determined
by the local Lyapunov exponents: A; > 0 and A3 < 0, since the flow direction (Ao = 0) is normal to
the surface. As a result all singularities are saddles, so by the Poincaré-Hopf theorem the number
of singularities is strongly related to the genus. The number is 2(g — 1).

The flow, restricted to the genus-g surface, can be put into canonical form and these canonical
forms can be classified. The classification involves projection of the genus-g torus onto a two-
dimensional surface. The planar projection consists of a disk with outer boundary and g interior
holes. All singularities can be placed on the interior holes. The flow on the interior holes without
singularities is in the same direction as the flow on the exterior boundary. Interior holes with
singularities have an even number, 4, 6, ... . Some canonical forms are shown in Fig. 9.

Poincaré sections have been used to simplify the study of flows in low dimensional spaces by
effectively reducing the dimension of the dynamics. In three dimensions a Poincaré surface of section
for a strange attractor is a minimal two-dimensional surface with the property that all points in the
attractor intersect this surface transversally an infinite number of times under the flow. The Poincaré
surface need not be connected and in fact is often not connected.

The Poincaré section for the flow in a genus-g torus consists of the union of g — 1 disjoint disks
(9 > 3) or is a single disk (g = 1). The locations of the disks are determined algorithmically, as
shown in Fig. 9. The interior circles without singularities are labeled by capital letters A, B,C, ...
and those with singularities are labeled with lower case letters a,b,c,... . The components of the
global Poincaré surface of section are numbered sequentially 1, 2, ... , g — 1, in the order they
are encountered when traversing the outer boundary in the direction of the flow starting from any
point on that boundary. Each component of the global Poincaré surface of section connects (in the
projection) an interior circle without singularities to the exterior boundary. There is one component
between each successive encounter of the flow with holes that have singularities. Heavy lines are
used to show the location of the seven components of the global Poincaré surface of section for each
of the three inequivalent genus-8 canonical forms shown in Fig. 9. The structure of the flow is
summarized by a transition matrix. For the canonical form shown in Fig. 9(c) the transition matrix
is

|

I
_ OO OO o
O = OO OO -
OO OO == O
OO OO == O
OO MH=OOO
OO MH=OOO
i e N e I o B e i )

where Tj ; = 1 if the flow can proceed directly from component ¢ to component j, 0 otherwise.

Bounding tori, dressed with flows, can be labeled. In fact, two dual labeling schemes are possible.
Following the outer boundary in the direction of the flow, one encounters: the g — 1 components of
the global Poincaré surface of section sequentially; the interior holes without singularities at least
once each; and the interior holes with singularites at least twice each. The canonical form (genus-g
torus dressed with a flow) on the genus-8 bounding torus shown in Fig. 9(a) can be labeled by the
sequence in which the holes without singularities are encountered (ABCBDED) or the order in
which the holes with singularities are encountered (abbacca). Both sequences contain g — 1 symbols.
These labels are unique up to cyclic permutation.

Symbol sequences for canonical forms for bounding tori act in many ways like symbol sequences
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Table 4: Number of canonical bounding tori as a function of genus, g.

g Nig) g N(g) g N9
3 1 9 15 15 2211
4 1 10 28 16 5549
5 2 11 67 17 14290
6 2 12 145 18 36824
7 5 13 368 19 96347
8 6 14 870 20 252027

for periodic orbits on branched manifolds. Although there is a 1:1 corresondence between bounded
closed two-dimensional surfaces in R and genus, g, the number of canonical forms grows rapidly
with g, as shown in Table 4. In fact, the number, N(g), grows exponentially and can even be
assigned an entropy:

. log(N(g)
lim ———= =log(3 5
Jm =7 =loe(3) ()
In some sense, canonical forms that constrain branched manifolds within them behave like branched
manifolds that constrain periodic orbits on them.

Every strange attractor that has been studied in R® has been described by a canonical bounding
torus that contains it. This classification is shown in Table 5.

Table 5: All known strange attractors of dimension d;, < 3 are bounded by one of the standard
dressed tori. Dual labels for the bounding tori depend on g — 1 symbols describing either holes
without singularities or holes with singularities.

Strange Attractor Holes W/O Singularites  Holes W Singularities  genus
Rossler, Duffing, Burke and Shaw A 1
Various Lasers, Gateau Roule A 1
Neuron with Subthreshold Oscillations A 1
Shaw-van der Pol A 1
Lorenz, Shimizu-Morioka, Rikitake AB aa 3
C» Covers of Rossler AB a? 3
C, Cover of Lorenz(® ABCD at 5
C, Cover of Lorenz® ABCB abba 5
2 — 1 Image of Fig. 8 Branched Manifold ABCB ab(ab)~! 5
Fig. 8 Branched Manifold AEBECEDE a’b?c2d? 9
C,, Covers of Rossler AB---N a” n+1
C,, Cover of Lorenz(® AB---(2N) a*" 2n+1
C,, Cover of Lorenz(®) (AZ)(BZ)---(NZ) a?b?---n? 2n +1
Multispiral Attractors AB...M)N(B...M)™t (ab...m)(ab...m)"t 2m+1

(a) Rotation axis through origin.
(®) Rotation axis through one focus.

Branched manifold perestroikas are constrained by bounding tori as follows. Each branch line of
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any branched manifold can be moved into one of the g — 1 components of the global Poincaré surface
of section. Any branched manifold contained in a genus-g bounding torus (g > 3) must have at
least one branch between each pair of components of the global Poincaré surface of section between
which the flow is allowed, as summarized by the canonical form’s transition matrix. New branches
can only be added in a way that is consistent with

e the canonical form’s transition matrix
e continuity requirements

e the no intersection condition

In the simplest case, g = 1, a third branch can be added to a branched manifold with two branches
only if its local torsion differs by +1 from the adjacent branch. In addition, the ordering of the
new branch must be consistent with the continuity and no intersection (ODE uniqueness theorem)
requirements.

6 Embeddings of Bounding Tori

The last level of topological structure needed for the classification of strange attractors in R3 de-
scribes their embeddings in R®. The classification using genus-g bounding tori is intrinsic — that
is, the canonical form shows how the flow looks from inside the torus. Strange attractors, and the
tori that bound them, are actually embedded in R3. For a complete classification we must specify
not only the canonical form but also how this form sits in R3.

This program has not yet been completed, but we illustrate with the genus-one bounding torus
in Fig. 10. This figure shows the canonical form at the top, and two different embeddings of it in
R3. The embedding on the left is unknotted. The embedding on the right is knotted like a figure 8
knot. Extrinsic embeddings of genus-one tori are described by tame knots in R?, and tame knots can
be used as “centerlines” for extrinsically embedded genus-one tori. Higher genus (g > 3) canonical
forms — intrinsic genus-g tori dressed with a canonical flow — have a larger (but discrete) variety
of extrinsic embeddings in R3.

7 The Embedding Question

The mechanism that Nature uses to generate chaotic behavior in physical systems is not directly
observable, and must be deduced by examining the data that are generated. Typically the data
consist of a single scalar time series that is discretely recorded: x;, i = 1,2,.... In order to exhibit
a strange attractor, a mapping of the data into R must also be constructed. If the attractor is
low dimensional (d < 3) one can hope that a mapping into R can be constructed that exhibits no
self-intersections or other degeneracies. Such a map is called an embedding. Once an embedding in
R3 is available, a Topological Analysis can be carried out. The analysis reveals the mechanism that
underlies the creation of the embedded strange attractor.

But how do you know that the mechanism that generates the observed, embedded strange at-
tractor has anything to do with the mechanism Nature used to generate the experimental data?

If the embedding is contained in a genus-one bounding torus, then the topological mechanism that
generates the data, as defined by some unknown branched manifold BMEgxp, and the topological
mechanism that is identified from the embedded strange attractor BMEgums, are identical up to three
degrees of freedom:
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Figure 10: (a) Canonical form for genus-one bounding torus. Extrinsic embeddings of the torus into
R3 that are (b) unknotted and (c) knotted like the figure 8 knot.
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e parity
e global torsion

e knot type.

As a result, in this case (genus-one) Topological Analysis of embedded data does reveal Nature’s
hidden secrets.
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