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SO, how did it all begin??? 

 

 

What did he see in her? 

 

What did she see in him? 











Results of this fusion 

 

Two sons (one a physicist) 

 

One chaotic PhD thesis 



Graduate student in search of thesis 

 

  ?????       

 

 

 

  !!!!!! 



Why Not??? 

 

     Once should have been enough.... 



   There was that experience with 

 

            Linear Algebra 

 

    
         ?§!@ç#&!!! 



    Well, … why not??? 



   Appeal of Chaos Theory  

 

Complicated behavior, large and aperiodic 

 

  fluctuations, abrupt  changes,     in 

 

      Stock markets 

 

      Foreign exchange markets 

 

      Bond markets 



MSCI index of French equity market
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Returns on French Equity Market
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  Motivation 
 

 

Financial market behavior still not well understood,  

 

despite decades of intensive, sophisticated analysis. 

 

 

 

 



Traditional modeling:  

  

treat fluctuations as linear perturbations near 

equilibrium  

simple model of a geometric random walk with 

uncorrelated innovations.   

 

This implies that stock returns, for example, are 

independent and identically distributed (iid) 

random variables. 

 

Motivation 



Development in 1980s of models to explain large 

fluctuations in volatility behavior.  GARCH 

family of models. 

 

Engle          1982 

Bollerslev   1986 

Motivation 



  Motivation 
 

Also in 1980s question arises:  can chaos theory contribute 

 

 to an understanding of financial market behavior? 

 
 

Irregularities of economic and financial data are  

 

attributed by theory to random exogenous shocks, but even  

 

simple deterministic chaotic models can produce  

 

time paths that appear to be random.  



               SO INDEED, WHY NOT??? 

 

 

 

 

 

  Bob does seem to have a better way.... 

       

 

 

 

   



Motivation 

 

Some early applications of chaos theory by economists 

 

to economic and financial data claimed to find evidence 

 

of chaos using 

 

     Correlation integral 

 

     Lyapunov exponents 

 

So you find chaos.... But then what? 



                    A Better Methodology  

 
A topological approach to the analysis of chaotic systems. 



NOW ... 

 

 

 

 

  To learn about chaos theory! 



  Important Issue 

 
A cautionary tale:  make sure tools taken from one 

 

field to apply in another field are appropriate. 

 

 

A test for chaos needs to be able to accommodate  

 

the peculiarities of economic and financial data  

 

series. 



  Peculiarities of Financial Data 

 

 
1. Data set may be of limited size (max. < 10

4 
obs.) 

 

2.  Presence of noise 

 

3.  Nonstationarity 



               The Close Returns Test 

 

Based on the recurrence property, the tendency 

of the time series to nearly, although never 

exactly, repeat itself over time. 

 

Searches for the unstable periodic orbits in a 

strange attractor. 

 

 



       Close Returns Test  

 
Close Returns test: create a graph 

 

 |x(t) – x(t+i)
+i

|   <     code black 

 

  |x(t)
t
 - x(t+i)

t+i
|   >    code white 

 

Apply to data   

 

Fixed 

 

Arrange in easily readable horizontal form 



   Initial Work 

 
Generate a variety of times series data types: 

 

(pseudo)random 

 

autoregressive 

 

periodic 

 

chaotic 



Close returns plot of chaotic time series, generated from Rössler model. 
First 1960 points of 5000-obervation set.  Chaotic pattern present even 
with small number of observations. 



Close returns plot for logistic map:  Xi+1 = Xi(1 – Xi).  Parameter  
value: = 3.75.  500x50-observation plot. 



Close returns plot of pseudorandom time series. 



Close returns plot of Rössler chaotic series with 15% addition of noise. 
Chaotic pattern remains easily visible. 



Chaotic signal is completely obscured by 200% addition of noise to Rössler series 

Rössler data  
with 200% addition of noise 

Rössler data  
with 200% addition of noise; 
Smoothed with 10-point MA 

 



   Close Returns Test 
 

1.  Works on relatively small data sets. 

 

2.  Robust against noise. 

 

3.  Preserves time-ordering information. 

 

4.  Can provide information about underlying  

 

 system generating chaotic behavior, if  

 

 evidence of chaos is detected. 



Application of Close Returns Test 

to Stock Market Data 
 

 Standard and Poor’s 500 Index (S&P500) 

 

Stock returns July 1962 – December 1989 

 

Weekly series, 1439 observations 



Close returns plot of weekly stock returns. 



Application of Close Returns Test 

to Treasury Bill Returns 
 

 780 monthly observations January 1926 – December 1990 



Close returns plot of Treasury bill returns. 



Disappointment 

There’s no chaos.  Now try to get published: 

 

1. You’re a graduate student – no PhD yet 

 

2. You’re going against the results of established types. 



Later Development of Test 

 Quantitative close returns test:  

 

   χ2 test 



Close returns histogram of Rössler chaotic series, using 
the full 5000-observation series over first 300 values 
of T.  



Close returns histogram of pseudorandom data set. 
Failure to reject Ho of iid using 2 test. 



Quantitative Close Returns Test:  test 

If the data are iid, then H
i
 = a constant 



The distribution will be binomial, with the probability of a hitp

 

 p(black) = total number of close returns 

     total area of plot 

 

and  the average value is  

 

  <H> np 

 

 

 



    Quantitative Close Returns Test 


c2

 = (H
i
 –  <H>)

2                       

              
np(1 – p) 

Null hypothesis:  data are iid 

 

Construct ratio of calculated-to-test statistic: 



tc


c2
/ctt2   

if ratio > 1, reject null hypothesis of iid 

 



Rejections of IID per Series 

  100 obs. 500 obs. 1000 obs. 

 

Uniform iid  46  52  58 

Normal iid  46  28  24 

Henon map  1000  1000  1000 

Logistic map 

  = 3.65  1000  1000  1000 

Logistic map   

= 3.65   1000  1000  1000 

AR(1),  = 1.0   963  1000  1000 

AR(1),  = 0.8   514   875   958 



Application of Close Returns Test 

to Stock Index Data 
 

 CRSP value-weighted return series (weekly) 

 

July 2, 1962 – Dec. 31, 1989 




2
 Ratio Test Results 

 

 
 Jan. 1976 – Dec. 1995   1.49 

 

 

 

 First third of observation set  1.0557 

 

 Second two thirds   1.0801 

 



Conclusions 

No positive evidence of chaos in exchange-rate data. 

 

However, some nonlinear dependence persists, which 

 

is not adequately accounted for by standard GARCH 

 

and EGARCH models. 



Theoretical models of financial markets can 

produce chaotic behavior: 

 

Chiarelli                                 1990 

Puu                                   1991 

De Grauwe et Dewachter       1995 

Chian et al.                             2006 

 

There are simply too many exogenous factors. 

Why don't we find chaos in financial market data?? 



Is There Life (Marriage)After 

Chaos? 

 

 

 

 

 

 

 



 

 ECONOPHYSICS!!!!! 
 

 



Research looking for evidence of chaos in 

Empirical economic and financial data: 

 

LeBaron                 1988 

Scheinkman and LeBaron   1989 

Ramsey    1990 

Brock et al    1991 

 

 

Motivation 



Many challenges to this type of model in 1980s: 

 

Lo and MacKinlay       1988 

Conrad and Kaul          1989 

Fama and French          1988 

Poterba and Summers  1998 

 

         Survey in Fama 1991 

Motivation 



  Motivation 
 

Initial studies in economics and finance literature often claimed  

 

to find chaotic behavior or at least behavior consistent with chaos,  

 

using dimension calculations and Lyapunov exponents. 

 

Later work tended to become more cautious, but even some 

 

recent papers (2004) have been published claiming compatibility 

 

with chaos, using these methods. 



Short-term Forecasting 

Use selected subsets of data from close returns plot  

 

that closely match the sequence immediately preceding  

 

the forecast period. 



Short-term Forecasting 

Procedure (illustrated with Roessler model data): 

 

1.  Select initial segment of x
i
 values (here 20 values) 

 

2.  Search across data for closely matching sequences 

 

3.  Extract the next 10 x
i
 values following each of the       

sequences identified in step 2. 

 

4.  Calculate weighted average values for each of the       10 

x
i 
to serve as the short-term forecast. 



Histogram of R2 values for 2000 short-term predictions for chaotic time series. 



Application of Close Returns Test 

to Exchange-Rate Data 
 

 British pound  Jan. 7, 1976 – Dec. 1, 1995 

 

German Mark  Jan. 7, 1976 – Dec. 1, 1995 

 

Japanese yen  Jan. 7, 1976 – June 17, 1994 

 

5197 daily observations for pound and mark, 

 

4814 for yen 

 

 




2
 Ratio Test Results 

(After linear filter) 
 

    

 

 First third of observation set  1.038 

 

 Second two thirds   1.0327 

 




2
 Ratio Test Results 

(After GARCH filter) 
 

    

 

 First third of observation set  0.7913 

 

 Second two thirds   0.959 

 



Box Plot
2
 Ratio Test 

 

Original version of test emphasizes the regularly spaced 

 

horizontal line segments which results from chaos. 

 

Other structure may get “washed out” from this one- 

 

dimensional projection. 

 

Second version applies the test directly to the two- 

 

dimensional plot.   



Box Plot
2
 Ratio Test 

Box size  Part 1   Part2    

      = 1%  = 2%     = 1%   = 2% 

20    1.05  1.30  1.14  1.18 

 

25    0.94  1.00  1.08  1.25 

 

30          1.10               1.33  1.36  1.43 

 

35          1.25               1.29  1.26  1.43 

 

1         1.49               1.80  1.46  1.59 

 

1         1.29               1.59  1.35  1.67 

 

50          1.03               1.22  1.33  1.55 



Box Plot
2
 Ratio Test 

Box size  Part 1   Part2    

     = 1%  = 2%     = 1%   = 2% 

20    0.94  1.04  1.27  1.42 

 

25    0.97  1.12  1.29  1.68 

 

30          0.99               1.12  1.54  1.91 

 

35          0.99               1.37  1.48  2.08 

 

40         0.93               1.18       1.72       2.26 

 

45         1.58               1.84       1.73       2.65 

 

50          1.03               1.60  1.77  2.58 



Box Plot
2
 Ratio Test 

 

Interpretation: 

 

Some type of dependence, linear or nonlinear, is  

 

present in the exchange rate series. 

 

 

Apply linear, nonlinear filters and test standardized  

 

residuals. 



Box Plot
2
 Ratio Test on Residuals 

 

Linear filter: 

 

x
t
 = b

o
 + b

1
D

M,t
 + b

2
D

T,t
 + b

3
D

W,t
 + b

4
D

TH,t
 + b

i
x

t-i
 + e

t 

 

 


2 

ratio results for histogram: 

 

pound = 1.211   mark = 1.013  yen = 0.965 

 

 


2 

ratio results for box plot: 

 

yen ratios now also exceed 1.0 

 

Conclusion: indications of nonlinear dependence 

 

 



Box Plot
2
 Ratio Test 

 

Nonlinear filter (GARCH(1,1) model): 

 

x
t
 = b

o
 + b

1
D

M,t
 + b

2
D

T,t
 + b

3
D

W,t
 + b

4
D

TH,t
 + b

i
x

t-i
 + e

t 

 

 

where e
t
 is normally distributed, with zero mean and 

variance h
t
, such that 

 

h
t
 = 

o
 + 

1
h

t-1
 + e

t-12 

 


2 

ratio results for box plot:  evidence of 

nonlinearity for all series 

 

 



Box Plot
2
 Ratio Test 

 

Nonlinear filter  (exponential GARCH(1,1) model): 

 

 


2 

ratio results for box plot:  evidence of 

nonlinearity for all series 

 

 

GARCH and EGARCH models do not adequately  

 

capture the nonlinearity in exchange rates 

 

 



Application of Close Returns Test 

to Economic Data 
1. Absence of unstable periodic orbits rules out chaos. 

 

1. Data are clearly not random, also not strictly periodic. 

 

1. Some type of structure is present.  Contour-like structure 

 

 may be evidence of quasi-periodic behavior, of either 

 

 a linear or a nonlinear origin.  (Examination of Fourier 

 

 spectrum of each series rejected hypothesis that the 

 

 data are quasi-periodic.) 

 

 



Close returns plot of German Mark – US dollar exchange rate 



Unemployment rate Industrial production index 

Gross national product 
Gross domestic  

private investment Employment 

Close returns plots of U.S. postwar macroeconomic series.  



  Objective 
 

 

Demonstrate applications of several methods derived  

 

from the physics and mathematics literature to analysis of 

 

financial data. 

 

Chaos theory 

 

Singular value decomposition 

 

Minimum spanning trees 



Application of Close Returns Test 

to Economic Data 
 

Business cycle data: quarterly or monthly, detrended,  

 

133-432 observations. 

 

Correlation dimension tests had produced some weak 

 

evidence of low dimension in published work. 

 



Other Mathematical Techniques 

of Current Interest 
 

 

     Singular Value Decomposition 

 

     Minimum Spanning Tree Analysis 

 

 

 



Other Mathematical Techniques 

of Current Interest 
 

Relevant to study of comovements of financial markets, 

 

particularly equity markets, at international level. 

 

 

- relevant to investors 

 

- relevant to policymakers 

 

 



Singular Value Decomposition 

Explain the variability of returns in a system of equity  

 

markets. 

 

Germany, UK, Czech Republic, Hungary, Poland 

 

1995-2005. 

 



Singular Value Decomposition 

X = N x p matrix of daily returns (approx. 2000) for 5 

       equity markets. 

 
X = UV´ 

 

 



Singular Value Decomposition 

X = N x p matrix of daily returns (approx. 2000) for 5 

       equity markets. 

 
X = UV´ 

              -   
1
                         - 

 -                 -                                     - 

 -            -                         - 

 -                 -                            - 

 -                      -    - 

 - 

 - 

 -         5 x 5             5 x 5 

 - 

 - 

 - 

 - 

 - 

 - 

 

  2000 x 5 

 

                

 

      



       SVD COMPUTATION 
 

Compute the p x p square matrix 
 

X΄X = (UV΄)΄(UV΄) = V
2
V΄   

 

Diagonalizing X΄X gives the spectrum of p eigenvalues 
2

   

 

   and  for each 

 the eigenvector v

j,


       

The dual eigenvectors u
i,

 can be computed by diagonalizing 

 

X΄X = (UV΄)(UV΄)΄ = U
2
U΄.       

   



Figure 2:  Total Return Variability and Proportion due to Each Principal Component,

500-Day Rolling-Window
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Figure 3a:  Correlation of UK's Returns with the First Principal Component,                              

500-Day Rolling-Window
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Figure 3c:  Correlation of the Czech Republic's Returns with the First Principal Component, 

500-Day Rolling-Window
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Figure 3d:  Correlation of Hungary's Returns with the First Principal Component,                       

500-Day Rolling-Window
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Figure 3e:  Correlation of Poland's Returns with the First Principal Component,                          

500-Day Rolling-Window
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Singular Value Decomposition 
1. Large first eigenvalue indicates substantial degree 

 

 of market linkages, of markets being driven by a 

  

 common factor. 

 

1. Little evidence of increase over recent years, so  

 

 diversification benefits not likely reduced.  Consistent 

 

 with other studies showing equity markets lag behind. 

 

1. Spread of correlations with first eigenvector reduced; 

 

 three groupings of the 5 markets. 

 

 



Minimum Spanning Trees 
 

Drawn from graphing theory. 

 

Way to study dynamical evolution of interdependence between 

 

equity markets. 

 

MSTs are connected graphs in which each node represents an 

 

Equity market.  Connected with the N – 1 most important links 

 

Such that no loops are created. 

 









Resume of Procedures used for Noise 

and Nonstationarity Problems 
 

 
Logarithmic first differences are generally used in studying  

 

financial data, to handle nonstationarity. 

 

This emphasizes noise component relative to signal. 

 

Therefore, several additional methods used to process data 

 

for purposes of testing robustness of close returns test. 



Detrending methods 



Close returns plot of work stoppage data 



Close returns histogram of work stoppage data. 
Note prevalence of regularly spaced sharp peaks. 


