
A Distributed Blackboard Architecture for
Interactive Data Visualization

Robert van Liere Jan Harkes Wim de Leeuw *

Center for Mathematics and Computer Science, CWI

Abstract

In this paper the motivation, design and application of a distribut-
ed blackboard architecture for interactive data visualization is dis-
cussed. The main advantages of the architecture is twofold. First, it
allows visualization tools to be tightly integrated with simulations.
Second, it allows qualitative and quantitative analysis to be com-
bined during the visualization process.

1 Introduction

The need for enhanced data modeling and data integration in
visualization environments has been widely recognized and has
been a topic of interest in recent workshops and conferences
[10, 161. Although visualization environments provide rich sup-
port for graphical modeling and rendering, many visualization
researchers feel that integration of the visualization environment
with the simulation environment remains a problem to be solved.

In this paper a distributed blackboard architecture for interactive
data visualization is discussed. The architecture has been used in
various projects related to high performance computing [II] and
computational steering [121.

Motivation This work was motivated by the following observa-
tions:

1. State-of-the-art scientific visualization tools are not sufficient-
ly integrated into simulation environments. In computational
steering, users can investigate intermediate results and mod-
ify of the computation before completion. Feedback dur-
ing the investigation may be required, for example to steer
computation around local minima. Users may interactively
steer simulations through adjustment of an application’s crit-
ical parameters. To support computational steering tight inte-
gration between simulation and visualization is required.

2. Large data sets defy inspection by visualization alone. Anal-
ysis of simulation output often consists of a combination of
visual inspection and numerical or statistical analysis. Scien-
tific visualization environments lack the integration of general
purpose analysis tools. Visualization combined with interac-
tive analysis will allow the scientist to explore the data both
visually and numerically. Combining the two allows the user
to perform qualitative and quantitative analysis simultaneous-
ly. In addition, the output of the analysis tools can be com-
bined with the visualization of the simulation data.

3. Efficient support for very large data sets is limited. Very
flexible data models have been defined that allow the
import/export of data from/to the simulation environment

* CWI, Department of Software Engineering, P.O.
Box 94097, 1090 GB Amsterdam, Netherlands. E-mail
{robertl(jaharkeslwimc}@cwi.nl

O-8 186-9 176-x/98/$10.00 Copyright 1998 IEEE

[5,6]. However, in order to effectively embed these data mod-
els in the visualization environment, two system related issues
have to be addressed; scalability of data, and access to remote
computations.

Many visualization researchers believe that state-of-the-art visu-
alization environments do not adequately address these problems.
For example, Foley and Ribarsky [3] point out that next-generation
visualization environments require, amongst others, a means to
bind data to geometry and a general analysis model.

Blackboard Models Blackboard models have been widely
used in the AI community as a particular kind of problem solving
model [2, 81. The blackboard model allows multiple independent
agents (usually called knowledge sources) to share information in a
central store (called the blackboard). The model serves as a schema
for organizing reasoning steps and domain knowledge to construct
a solution to a particular problem. For example, in a forward rea-
soning model, problem solving begins by reasoning forwards from
initial data towards a goal. In this case each knowledge source will
contribute its specific knowledge towards the goal.

Knowledge is segmented into modules and a separate inference
engine is provided for each module. Communication between mod-
ules is realized by reading and writing in the blackboard. The black-
board can be partitioned so that it contains regions with differing,
but perhaps related, data structures. In this way applications can
organize the solution space into one or more application dependent
hierarchies.

The blackboard model does not explicitly specify a control com-
ponent. It merely specifies a general problem solving behavior.
The actual locus of control can be in the knowledge modules, in
the blackboard itself, in a separate module, or in a combination of
these. ’

The difficulty with this description of the blackboard model is
that it only outlines the organizational principles. For those who
want to build a blackboard system, the model does not specify how
it is to be realized as a computational entity. However, given a prob-
lem to be solved, the blackboard model provides enough guidelines
for sketching a solution.

The blackboard model can be used as a framework for imple-
menting visualization environments. This will be substantiated in
section 2.6 after we discuss some details of the distributed black-
board architecture.

Paper Format The format of the paper is: In the next sections
some design details of the distributed blackboard architecture are
presented. First we give and overview of the architecture, its ingre-
dients, and its programming abstractions. Then, in section 2.6 we
discuss the merits of the architecture and how our original motiva-
tions are addressed. In section 3, some related work that resembles

’ Initial proposals considered the blackboard only as a passive memory
with external control modules that monitored the changes in the blackboard.
Later - efficiency related - refinements integrated the control modules into
the blackboard.

225

the blackboard architecture is discussed. Finally, section 4 shows
how general analysis tools can be integrated into the visualization
process using the blackboard architecture.

2 Distributed Blackboard Architecture

2.1 Overview

A simplified overview of f.he architecture is shown in figure 1. The

Blackboard

1 Simulation 1

Figure 1: The user view of the blackboard architecture.

architecture provides an interface between a user and a simulation.
It is centered around a bluckboard and satellite processes that pro-
duce and consume data. Satellites implement the simulation, anal-
ysis programs, geometry mapping and rendering algorithms. The
purpose of the blackboard is twofold. First, it manages a database
of variables. Satellites can create, open, close, read, and write vari-
ables. Second, it acts as an event notification manager. Satellites
can subscribe to events that represent state changes in the black-
board. Whenever such an event occurs, it will publish the event to
all subscribing satellites.

A large collection of general purpose :satellites have been devel-
oped. For example, a data slicing satellite, a calculator, a data log-
ger, a VTK satellite that provides all VTK functionality [151, etc.
Also, a 3D interactive editor and rendering satellite that binds data
to geometry has been developed [131.

2.2 Variables

The basic blackboard object is the variable, which encapsulates all
information required to access a blackboard object. Variables are
defined as a tuple consisting of of four components: a name, a type
descriptor, raw data and a list of attributes (see figure 2). Names

variable attributes

Figure 2: Four components of a variable.

uniquely identify the variable. The variable descriptor determines
the type, size and layout of the data. The data component is the
storage container for the raw data. Attributes are name value pairs
that may be used to describe meta-data of the variable.

The underlying data model supports two composite data types:

regular topology. Data which has been generated from the
following grid types; i.e. uniform, rectilinear and curvilinear
grids.

The regular topology data type is very similar to the data mod-
el supported by NetCDF [141. In this case, the type descriptor
contains all information concerning the shape and dimension-
ality of the variable.

geometry lists A geometry list is a list of geometric elements.
Each element can be a simple geometric object, such as poly-
gon, polyline, mesh, light, camera, etc.

The the functionality offered by the geometry list is very sim-
ilar to that offered by the low level interface of P3D [171.

Future extensions to the data model will include explicit support
for data with an irregular topology and scattered data. Note that
these extensions do not affect the semantics of the variable, but only
the expressiveness of the underlying data model.

Operations on variables are very similar to low level file oper-
ations: create, open, close, read, write, and getdescriptor. Simple
set/get operations are available to manipulate attribute lists.

Two scatter/gather techniques are supported to optimize I/O
operations on variables. First, many variables can be read/written
simultaneously in one atomic I/O operation. Second, a comprehen-
sive data mapping mechanism is provided to allow data to be sliced,
subsampled, etc during the I/O operation. This allows satellites to
use a different data layout compared to the data structure stored
in the blackboard. The identity mapping allows a one-to-one copy
between storage in the satellite and data manger.

2.3 Architecture

The distributed architecture consists four building blocks: a global
name manager (denoted as GNM), one or more local blackboards
(LBB), one or more satellites, and typed streams.

Global Name Manager: The GNM maintains the bookkeeping
information of all LBBs and variables in system. The GNM
maintains a list of all variables in the system and in which
blackboard these variables exist. Only the variables names,
descriptors and attributes are stored in the GNM. Variable data
is not stored in the global name manager.

Local Blackboard: A local blackboard resides on each host in
the distributed environment. Local blackboards accept con-
nections from satellites executing on the same host and other
LBBs.

Variable data is stored in the LBB, and is shared by all con-
necting satellites. Each LBB maintains a copy of the variable
data.

The LBB manages only those variables that are opened by the
connected satellites. When a satellite opens a variable, the
LBB consults the GNM to check if the same variable exists
in other LBBs. If this is the case, the LBB will connect with
these LBBs. A LBB-LBB connection is used to maintain vari-
able consistency (variable consistency is addressed in the next
paragraph).

Satellites: A satellite is a process which communicates with
its corresponding LBB. Satellites may create, open, close, and
read/write variables, as well as subscribe to variable events.

An abstract satellite is shown in figure 3. Basically, it con-
sists of an operator that transforms input data into output data.
Control determines when this operation has to be carried out,

226

or, in other words, when a satellite is triggered. Operators can
also be controlled by additional parameters manipulated via
user interface widgets.

datain dataout

control

4-Y

operator

L J

t
parameters

Figure 3: Interfaces to an abstract satellite.

Data input and output is performed by read/writing variables.
Input and output triggering is discussed in section 2.5.

l Command, event and data streams: A connection between a
satellite and the LBB consists of a command, event and data
stream. Commands from the satellite to the LBB are sent over
the command stream. The LBB sends events to the satellites
via the event stream. Data streams are used to transport data
between LBBs and satellites.

Figure 4 shows a example configuration of the distributed black-
board architecture. This configuration shows two LBBs and four
satellites. Both local blackboards are always connected to the
GNM. The local blackboards share a variable, hence, are connect-
ed.

Figure 4: Distributed blackboard architecture.

Satellites execute in parallel but LBBs are single threaded, so
that only one satellite can access the LBB simultaneously. Howev-
er, access to different LBBs is concurrent.

When a satellite writes a variable, the LBB will broadcast a
mutate event to all connected satellites and LBBs that share the
variable. When a satellite reads a variable, the LBB will first check
if the data is up to date and, if so, will service the read request. If
the data is not up to date, the LBB will first get the latest copy of
the data from another LBB before servicing the read request. The
details of this algorithm are very similar to the cache consistency
algorithms found on cache based SMP machines.

2.4 Programming Abstractions

Satellite programmers can access the LBB using three layered
APIs. Each layer provides a higher level of abstraction. Higher

layers are easier to use, but provide less functionality than the low-
er layer.

The local blackboard API is a low level library interface
which provides functionality for LBB communication, vari-
able management and event management. This layer pro-
vides all details of the underlying LBB protocols. It requires
detailed knowledge and is difficult to use due to the inherent
parallelism in the system.

The high level data input output layer is built on top of the
local blackboard API. Many cumbersome low-level details
are shielded from the user. In particular, the data input out-
put layer hides the notion of events and has builtin support for
structuring variables into sets, and support for handling effi-
cient set I/O.

A design goal of the data input output layer was to keep
the required changes to the simulation code minimal. As an
example of the data input output layer, consider the following
C program:

simulation(float *s, float *t, int *size, float *x)
{

int continue = TRUE;

/* Open connection, connect and subscribe variables *I

dioOpen(“borneo.cwi.nl”);
dioConnectFloat(“s”, s, READ);
dioConnectInt(“continue”, &continue, READ);
dioConnectFloatArray(“x”, x, 1, size, UPDATE);
dioConnectFloat(“t”, t, WRITE);

/* simulation loop and update data */

while (continue)
{

t=t+ 1.0;
calculate-values(t, s, size, x);
dioUpdate();

1
dioClose();

The structure of this example, which is typical for continuous
simulations, consists of two parts. First, variables are initial-
ized. The required changes to existing source code are limited
to opening and closing a connection with the Data Manager
and connection of the variables via the dioConnect routines.
Second, a main loop is entered where time is incremented and
new values are calculated. The required changes to the source
code is a single call to exchange data. The locations where to
insert these calls are easy to find; typically at the outer level
of the simulation program.

The first parameters of the dioconnect routines are the
name of the variable and its address. For the connection of
arrays the number of dimensions ,and their sizes must also be
specified. The last parameter is used by the dioupdate
routine to determine the direction of the data flow. In
dioupdate first the event stream from the LBB is checked
if variables to be read or updated have changed. If SO,

these variables are read from the LBB. Next the values of
all unread variables are written to the LBB. The net result
of dioupdate is that all connected variables have the same
value in the simulation and LBB. With these few calls the
user can interact with parameters (s) of the simulation, to stop

227

3.

2.5

the simulation (continue), monitor its progress (t , x) or
change state variables (x).

To deal with more hierarchical situations, variables may be
grouped into sets. In the main loop the satellite can read and
write specific sets, and wait until a particular set mutates.

.4 extensible and embedded scripting language built on top of
the data input output. Scripting can be used for simple opera-
tions on variables, such as slicing and logging. The advantage
of scripting is its ease of use in developing satellites.

Satellite Control and Synchronization

Satellites cooperate via the basic input/output mechanisms that are
provided for variables. Writing to a variable will cause an event to
be sent to all satellites subscribed to that variable. This mechanism
is used to mediate the execution of satellites. The user can specify
that if a particular variable - the input trigger variable -is mutated,
the operator has to be evaluated. The action of operator evalua-
tion is called triggering. Furthermore, the user can also specify
an output trigger variable, which is to be written to each time the
operator has been evaluated. Input and out;put triggers variables can
be linked together to mediate the execution of satellites. In gener-
al, linking two trigger variables defines a data dependency between
these two variables. Linking a number of variables results in an
directed graph, which we call the trigger graph.

A high level trigger scripting language and script interpreter
satellite have been developed to simplify the definition of trigger
variables. The task of the trigger script interpreter satellite is to
manage the trigger graph. As an example, consider the trigger graph
shown in figure 5: A slicing and dicing satellite operate on simu-

Figure 5: Control loop of four satellites defined by a trigger script

lation output, which in turn is the input for the rendering satellite.
The simulation may only compute the next step after the render-
ing satellite has drawn the previous frame. The rendering satellite
depends on variable computed by the simulation and dicer. The
script to realize this configuration is:

simulation > slicer
slicer > dicer
simulation & dicer > renderer
renderer > simulation

A trigger script is defined as a sequence of trigger rules. The
syntax of each rule is :

rule := expr > name
expr := expr ‘&’ expr 1

expr ‘1’ expr 1
expr ‘;’ expr 1
‘(’ expr ‘)’)
name

name := satellitename

The trigger script interpreter satellite has been integrated in the data
input output layer. Whenever the trigger script satellite interprets a
trigger rule, it sets the attributes of the trigger input variable with

a representation of this rule. The data input output layer uses this
information to determine when a satellite is to be triggered. Note
that attributes of the trigger input variable are set by the trigger
script interpreter satellite and can be reset during the lifetime of the
satellite.

2.6 Discussion

The distributed blackboard extends the centralized blackboard in
many ways; it provides support for efficient data movement among
heterogeneous hosts, scales for large data sets, and offers a richer
data model. Although the architecture is distributed, it is important
to note that the programming model is not affected; i.e. the user and
programmer view of a blackboard is still a centralized data store.

The architecture has been implemented on a number of hetero-
geneous UNIX and NT machines. TCP/IP is used for communica-
tion between LBB’s and, when possible, shared memory is used for
satellite to LBB communication. Rendering satellites are available
for many display types, ranging from low-end laptop displays to
sophisticated VR displays, such as the CAVE.

In retrospect, we believe that the architecture provides support to
fulfill our original requirements:

integration.

The variable naming mechanism is used to bind data struc-
tures in the blackboard to data structures in the satellite. The
event mechanism is used to maintain the consistency of these
data structures. The net effect is that a two way binding exists
between data in the blackboard and data in the satellite.

For example, a rendering satellite can utilize this by binding
geometry to variables in the blackboard. A simulation can
also bind the same variables. Hence, computational steering
is supported.

qualitative vs. quantitative analysis.

Integration of data structures is not restricted to simulation
and rendering satellites alone, but can be used by any satellite.
General purpose analysis tools can be packaged as satellites.
numerical or statistical analysis Hence, the analysis of simu-
lation output can be a combination of visual inspection and
numerical/statistical analysis.

efficiency of data transport.

Distributed blackboards maintain local copies of a data struc-
ture. A single event will be broadcasted when a satellite
mutates the data structure. The data structure will be trans-
ported to another blackboard only when it is needed. This
mechanism - called ‘transport by demand’ - saves bandwidth
if data structures are written frequently but read only occa-
sionally.

ease of use.

Using the low level libraries require knowledge about event
driven and parallel programming abstractions. However,
higher level libraries shield all these details and allow a pro-
grammer to easily bind Fortran data structures to variables
in the blackboard. In this way existing simulation code can
rapidly be integrated into the environment.

Also, programmers need not know that the blackboard is dis-
tributed. Abstractions for opening and manipulation variables
are very similar to the familiar file handling abstractions.

228

3 Related work

Many research and development teams have designed and imple-
mented interactive visualization environments. Giving an in depth
analysis of other visualization environments is outside the scope of
this paper - see [4] for a elaborate annotated bibliography on var-
ious aspects of interactive data visualization, including interactive
program monitoring and steering. Instead of a extensive overview
of related work, we discuss work dealing with issues that relate to
our blackboard architecture.

Williams, Rasure and Hanson [18] provide a framework to
understand design tradeoffs when developing data flow based visu-
alization systems. Data flow systems are attractive because of the
similarities with the visualization pipeline: users can easily orga-
nize their simulation, filter, mapping and render modules in an intu-
itive way. However, data flow environments do not provide sup-
port to deal directly with the underlying data, except for import-
ing/export data from a file or simulation. Hence, the integration
with the underlying data is limited.

CAVEvis [9] is a distributed real-time visualization system for
streaming large scalar and vector fields into the CAVE. The gov-
erning idea is to render the geometry as fast as possible in order to
maintain the highest level of interactivity. It uses separately running
modules to asynchronously generate the geometry data, such as
modules to generate isosurfaces or particle paths. Sequence names
and time-stamps are used to gather data related to a frame, regard-
less of the order in which the data is received. Our blackboard
architecture does not explicitly support any form of sequencing and
control. Rather, the synchronization is used to provide similar func-
tionality.

SuperGlue [7] is a programming environment for scientific visu-
alization whose main goal is extensibility and ease of use. The
approach used is to offer a very generic set of primitive data struc-
tures and a inter-language interface, which programmers use to inte-
grate data into SuperGlue system.

4 Radon Forecasting

The distributed blackboard architecture has been applied to an
atmospheric transport application. In the hope that systematic sim-
ulation errors can be found, researchers are interested in compar-
ing simulated concentrations with actual measurements. Simulation
errors can arise from modeling errors, numerical errors, visualiza-

tion errors, and input errors. Using our system we want to discover
systematic errors that occur due to a combination of:

l spatial errors: geographical locations of the simulated data
differ from the measured data.

l temporal errors: the simulated data differ from the measured
data in time.

l scaling errors: the simulated data is systematically higher or
lower than the measured data; eg. due to an inaccurate emis-
sion sources.

Various automated data analysis techniques have been developed
that search for regions in the simulated data that fit the measured
data. Details of these techniques, which are are based on statistical
comparison and fitting methods, are outside the scope of this paper.

The goal of this particular case is the accurate forecasting of
radioactive noble gas Radon (“‘Rn) concentrations based on mea-
sured wind and emission fields. The simulated Radon concentra-
tions were compared with measured concentrations on three islands
in the Indian ocean.

Visualization Figure 6 gives an overview of the ongoing
Radon transport simulation over the Indian ocean. Spot noise
was used to display the wind fields. A rainbow color mapping
was used to display the Radon concentrations and small colored
circles showing the measured concentrations are drawn on the
three sites where measured data is available. The three sites
are located at:

Figure 7 shows a sequence of snapshots of the automated point
fitting process. Semi-transparent circles are drawn at points calcu-
lated by the data analysis techniques. The opacity of the circles is
mapped to the fit of the data. Transparent circles indicate points of
poor fit; opaque circles indicate points of better fit. The left image
of figure 7 depicts the points in an initial configuration around
Amsterdam Island. A new configuration is derived by deleting a
poor fitting point and taking for a new point at a random position
close to the best fit point. In this way the process converges to
a minimum, the area which best fits the data. The middle image
shows the configuration after a number of steps. Finally the points
may converge to a stable configuration, as indicated on the right
image.

A plotting satellite was used to show time series of a scalar val-
ue. The output of the plotting satellite is shown on the bottom of
figure 8. The three plots show: the measured data at Amsterdam
Island (top plot), the simulated data at the point of measurement
(middle plot), and the best fit found by the analysis satellite (bot-
tom plot).

Figure 8: Measured data at Amsterdam Island (top) simulated data
(middle) and best fit (bottom)

The user may at any time also edit the set of points by dragging
any point to a different location. This is useful if the user suspects
other local minima in the data which may be missed by the analysis
software.

Blackboard Figure 9 is a diagram of the blackboard and the
satellites around it. The Radon simulation satellite creates a set of
three variables containing the wind fields and the simulated scalar
Radon field. After each time step this set will be dumped into the
LBB. A reader satellite reads the measured site data from a data
base and writes this data onto the blackboard.

The analysis satellite creates the variable containing the candi-
date points. It continuously dumps a new candidate points into the
LBB until a stop criterion is reached. In addition, the analysis satel-
lite opens the variables created by the simulation. Whenever a new
data set is produced it will read it, and if any of the candidate points
have been mutated, it will read the new candidate points. The visu-
alization satellite will read and display the data sets and candidate
points.

Upon any variable mutation, the corresponding satellite will be
triggered. After each time step the simulation will dump data into
the LBB. Alternatively, the user may drag a point to a new position,
resulting in a new set of candidate points which are written to the
LBB.

Discussion The governing idea of this example is to show how
the blackboard model is used in a non-trivial setting. The appli-
cation combines qualitative user actions (direct manipulation of

Blackboard
1

Figure 9: Blackboard configuration of Radon application.

the visualization) with quantitative analysis tools (computations of
numerical algorithmsj. Several levels of information can be dif-
ferentiated: on the lowest level computed data and measured data
is available, analysis satellites consume this data to produce infor-
mation of a higher level. The user, in turn, can interact with the
simulation or analysis satellites as a reaction to this information.

The distributed blackboard architecture is a natural framework
for solving such problems. Whenever information at a certain level
is mutated, the appropriate satellite recalculates its output using the
new information and mutates the next level of information. Due to
the blackboard architecture, data can be shared among all satellites.

5 Conclusion

In this paper we presented a distributed blackboard architecture for
scientific visualization. The blackboard architecture allowed us to
address two important issues concerning interactive visualization
environments. These issues are: First, tight integration between
simulation and visualization. This is realized through the name
concept of a variable which tightly binds data stored in in the black-
board with data in the satellite. Second, to combine qualitative and
quantitative data analysis. This is realized by allowing general anal-
ysis satellites to operate in close cooperation with the visualization
satellites.

The Radon application is very simple and should be seen as an
elementary case study. In the future we plan to apply the distributed
architecture to a 3D ozone simulation over the Netherlands. Here,
the fitting criteria will be a volume, the chemical reactions involved
in computing ozone are much more complicated, and the measured
ozone data is less reliable. Nevertheless, there are signs that this
type of visualization based analysis will provide added value to the
atmospheric researcher [I].

Acknowledgments

During the coarse of this work, we have benefited from helpful dis-
cussions with Frank Dentener of the Institute for Marine and Atmo-
spheric Research in Utrecht and Jan Verwer of the Department of
Modelling, Analysis and Simulation at the CWI. We are grateful
to the reviewers who provided valuable ideas for improvements of
the paper. This work is partially funded by the Dutch foundation
High Performance Computing and Networking (High Performance
Visualization project).

230

References

[I] F. Dentener. Personal Communication, Institute for Marine
and Atmospheric Research (IMAU), Febuary, 1998.

[2] R. Engelmore and T. Morgan, editors. Blackboard Systems.
Adison-Wesley, 1988.

[3] J. Foley and W. Ribarsky. Next-generation data visualiza-
tion tools. In L. Rosenblum, R.A. Earnshaw, J. Encarnacao,
H. Hagen, A. Kaufman, S. Klimenko, G. Nielson, F. Post, and
D. Thalmann, editors, Scientific Visualization : Advances and
Challenges, pages 103-126. Academic Press, 1994.

[17] J. Welling, C. Nuuja, and P. Andrews. P3D: A lisp-based
format for representing general 3d models. In Proceedings
Supercompting ‘90, pages 766-774. ACM, 1990.

[I81 C. Williams, J. Rasure, and C. Hansen. The State of the Art
of Visual Languages for Visualization. In A.E. Kaufman and
G.M. Nielson, editors, Proceedings Visualization ‘92, pages
202-209, 1992.

[4] W. Gu, J. Vetter, and K. Schwan. An annotated bibliog-
raphy of interactive program steering. SKPLAN Notices,
29(9):140-148, 1994.

[5] R. Haber, B. Lucas, and N. Collins. A data model for sci-
entific visualizaiton with provisions for regular and irregular
grids. In G.M. Nielson and L. Rosenblum, editors, Proceed-
ings Visualization ‘91, pages 298-305, I99 I.

[6] W.L. Hibbard, C.R. Dyer, and B.E. Paul. A lattice model for
data display. In R.D. Bergeron and A.E. Kaufman, editors,
Proceedings Visualization ‘94, pages 3 IO-3 17, 1994.

[7] J. Hultquist and E. Raible. SuperGlue: A programming envi-
ronment for scientific visualization. In A.E. Kaufman and
G.M. Nielson, editors, Proceedings Visualization ‘92, pages
243-250, 1992.

[S] V. Jagannathan, R. Dodhiawala, and L. Baum, editors. Black-
board Architectures and Applications. Academic-Press, 1989.

[9] V. Jaswal. CAVEvis: Distributed real-time visualization of
time-varying scalar and vector fields using the CAVE virtual
reality theater. In R. Yagel and H. Hagen, editors, Proceedings
Visualization ‘97, pages 301-308, 1997.

[IO] J.P. Lee and G.G. Grinstein, editors. Database Issues for Data
Visualization. Springer Verlag, 1993.

[I I] WC. de Leeuw and R. van Liere. Divide and conquer
spot noise. In Proceedings Supercompting ‘97 (http : //
scxy.tc.cornell.edu / ~97 / program / TECH/DELEEUW /
INDEX.HTM). ACM, 1997.

[121 R. van Liere and J.J. van Wijk. Steering smog prediction.
In B. Hertzberger and P. Sloot, editors, Proceedings HPCN-
Europe ‘97, pages 241-252. Springer Verlag, April 1997.

[131 J.D. Mulder and J.J. van Wijk. 3D computational steering
with parametrized geometric objects. In G.M. Nielson and
D. Silver, editors, Proceedings Visuulization ‘95, pages 304
31 I, 1995.

[141 R.K. Rew and G.P. Davis. The UNIDATA netCDF: Software
for scientific data access. In 6th Interutional Conference on
lnteructive Information and Processing Systems for Meteorol-
ogy, Oceanography and Hydology, pages 33-40, Anaheim,
CA, 1990.

[I51 W.J. Schroeder, K.M. Martin, and W.E. Lorensen. The
design and implementation of an object-oriented toolkit for
3D graphics and visualization. In R. Yagel and G.M. Nielson,
editors, Proceedings Visualization ‘96, pages 93-l 00, 1996.

[I61 L.A. Treinish. Workshop report: data structure and access
software for scientific visualization. In SIGGRAPH’90 work-
shop report, volume 25(2), pages 104-l 18. ACM, 199 I.

231

537

